Constraining gluon PDFs and TMDs with quarkonium production

Melih A. Ozcelik

Institut de Physique Nucléaire Orsay/Université Paris-Sud

ozcelik@ipno.in2p3.fr

Collaborators: M.G. Echevarria, J.-P. Lansberg, C. Pisano, A. Signori

DIS Torino
11 April 2019
the η_c - a good gluon probe

- η_c is a gluon probe at low scales
the η_c - a good gluon probe

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production

η_c cross section computation known at NLO since 1992 in collinear factorisation

at LO since 2012 and at NLO since 2013 in TMD factorisation

first hadro-production measurement data released in 2015 by LHCb ($p_T > 6 \text{ GeV}$)

ηc - a good gluon probe

- ηc is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- ηc cross section computation known
the η_c - a good gluon probe

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- η_c cross section computation known
 - at NLO since 1992 in collinear factorisation

at LO since 2012 and at NLO since 2013 in TMD factorisation

first hadro-production measurement data released in 2015 by LHCb

(p_T > 6 GeV)

the η_c - a good gluon probe

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- η_c cross section computation known
 - at NLO since 1992 in collinear factorisation

 - at LO since 2012 and at NLO since 2013 in TMD factorisation

the η_c - a good gluon probe

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- η_c cross section computation known
 - at NLO since 1992 in collinear factorisation
 - at LO since 2012 and at NLO since 2013 in TMD factorisation
- first hadro-production measurement data released in 2015 by LHCb
 - ($p_T > 6$ GeV)
first hadro-production measurement data released in 2014 by LHCb
\((p_T > 6 \text{ GeV})\)

\[2 < y_{\eta_c} < 4.5\]

\[\sqrt{s} = 8 \text{ TeV}\]

\[\text{NLO CSM \cite{Butenschoen:2015bka}}\]

\[\text{LHCb data \cite{Aaij:2015gja}}\]
first hadro-production measurement data released in 2014 by LHCb ($p_T > 6$ GeV)

- NLO Colour-Singlet Model describes LHCb data well (see plot)
η_c data at LHCb - 2015

- first hadro-production measurement data released in 2014 by LHCb ($p_T > 6$ GeV)
 - NLO Colour-Singlet Model describes LHCb data well (see plot)
 - unfortunately, data do not cover low p_T, however could be measured down to $p_T = 0$ at fixed-target experiment AFTER

[Y. Feng et al., arXiv:1901.09766 [hep-ph]]
the η_c - a good gluon probe

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- η_c cross section computation known
 - at NLO since 1992 in collinear factorisation
 - at LO since 2012 and at NLO since 2013 in TMD factorisation
- first hadro-production measurement data released in 2014 by LHCb ($p_T > 6$ GeV)
 - NLO Colour-Singlet Model describes LHCb data well (see plot)
 - unfortunately, data do not cover low p_T, however could be measured down to $p_T = 0$ at fixed-target experiment AFTER
- encounter problem of negative cross-sections with η_c and other quarkonia bound states
the η_c - a good gluon probe

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- η_c cross section computation known
 - at NLO since 1992 in collinear factorisation
 - at LO since 2012 and at NLO since 2013 in TMD factorisation
- first hadro-production measurement data released in 2014 by LHCb ($p_T > 6$ GeV)
 - NLO Colour-Singlet Model describes LHCb data well (see plot)
 - unfortunately, data do not cover low p_T, however could be measured down to $p_T = 0$ at fixed-target experiment AFTER
- encounter problem of negative cross-sections with η_c and other quarkonia bound states
- how to resolve the issue with negative cross-sections?
the η_c - a good gluon probe

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- η_c cross section computation known
 - at NLO since 1992 in collinear factorisation
 - at LO since 2012 and at NLO since 2013 in TMD factorisation
- first hadro-production measurement data released in 2014 by LHCb ($p_T > 6$ GeV)
 - NLO Colour-Singlet Model describes LHCb data well (see plot)
 - unfortunately, data do not cover low p_T, however could be measured down to $p_T = 0$ at fixed-target experiment AFTER
- encounter problem of negative cross-sections with η_c and other quarkonia bound states
- how to resolve the issue with negative cross-sections?
 → how is this related to PDFs and TMDs?
problem of negative cross-sections - η_c and J/ψ at NLO

comparison of η_c (left) and J/ψ (right) differential cross-sections at NLO with different scale choices of μ_R and μ_F with CTEQ6M

cross-sections & probabilities

\[P_{\text{physical}} = \sum_i P_i \] \hspace{1cm} (1)

- physical probabilities \(P_{\text{physical}} \) are by definition positive
\[\mathcal{P}_{\text{physical}} = \sum_i \mathcal{P}_i \] (1)

- Physical probabilities \(\mathcal{P}_{\text{physical}} \) are by definition positive.
- Sub-probabilities \(\mathcal{P}_i \) may be negative.
\[P_{\text{physical}} = \sum_i P_i \] (1)

- Physical probabilities \(P_{\text{physical}} \) are by definition positive.
- Sub-probabilities \(P_i \) may be negative.
 - Interpretation amounts to double-counting due to approximations/truncations; i.e. another prob. \(P_j \) was too large hence needs to be subtracted.
\[\mathcal{P}_\text{physical} = \sum_i \mathcal{P}_i \]

- Physical probabilities \(\mathcal{P}_\text{physical} \) are by definition positive.
- Sub-probabilities \(\mathcal{P}_i \) may be negative.
 - Interpretation amounts to double-counting due to approximations/truncations; i.e., another prob. \(\mathcal{P}_j \) was too large hence needs to be subtracted.
 - Example: Parton Distribution Functions can be negative for some \(x \)-values.
cross-sections & probabilities

\[P_{\text{physical}} = \sum_i P_i \quad (1) \]

- physical probabilities \(P_{\text{physical}} \) are by definition positive
- sub-probabilities \(P_i \) may be negative
 - interpretation amounts to double-counting due to approximations/truncations; i.e. another prob. \(P_j \) was too large hence needs to be subtracted
 - example: Parton Distribution Functions can be negative for some \(x \)-values
- **cross-sections** are **observable** quantities, hence physical probabilities \(P_{\text{physical}} (\sigma, \frac{d\sigma}{dy}, \ldots) \) must be **positive**
What are potential sources for negative cross-sections?

- Is it due to failure of theoretical models (NRQCD etc.) for quarkonia?
- Is it due to truncation of fixed-order calculation? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross-sections?
- Is it due to collinear factorisation? Do we need to include TMD effects?
What are potential sources for negative cross-sections?:
- is it due to failure of theoretical models (NRQCD etc.) for quarkonia?
What are potential sources for negative cross-sections?:

- Is it due to failure of theoretical models (NRQCD etc.) for quarkonia?
- Is it due to truncation of fixed-order calculation? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross-sections?
What are potential sources for negative cross-sections?

- Is it due to failure of theoretical models (NRQCD etc.) for quarkonia?
- Is it due to truncation of fixed-order calculation? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross-sections?
- Is it due to collinear factorisation? Do we need to include TMD effects?
negative cross-sections - open $c\bar{c}$ production at N2LO

open $c\bar{c}$ production at NLO/N2LO, comparison with different PDFs (ABM12, MMHT)

in this case, people attribute the negative cross-section to negative gluon PDFs at low scales and rather low-x, however
negative cross-sections - open $c\bar{c}$ production at N2LO

open $c\bar{c}$ production at NLO/N2LO, comparison with different PDFs (ABM12, MMHT) [Accardi et al., Eur.Phys.J. C76 (2016) no.8, 471]

in this case, people attribute the negative cross-section to negative gluon PDFs at low scales and rather low-x, however

- $\frac{d\sigma}{dy}$ does not exist at NNLO
negative cross-sections - open $c\bar{c}$ production at N2LO

open $c\bar{c}$ production at NLO/N2LO, comparison with different PDFs (ABM12, MMHT)

in this case, people attribute the negative cross-section to negative gluon PDFs at low scales and rather low-x, however

- $\frac{d\sigma}{dy}$ does not exist at NNLO
- full scale analysis not yet performed
open $c\bar{c}$ production at NLO/N2LO, comparison with different PDFs (ABM12, MMHT)
in this case, people attribute the negative cross-section to negative gluon PDFs at low scales and rather low-x, however

- $d\sigma/dy$ does not exist at NNLO
- full scale analysis not yet performed
 → therefore one cannot rule out the possibility of negative cross-sections with positive PDFs
negative cross-sections - open $c\bar{c}$ production at N2LO

open $c\bar{c}$ production at NLO/N2LO, comparison with different PDFs (CT14, PDF4LHC15)

What are potential sources for negative cross-sections?:

- Is it due to failure of theoretical models (NRQCD etc.) for quarkonia?
 → No, it is a more general problem; see open $c\bar{c}$ production

- Is it due to truncation of fixed order calculation? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross-sections?
 → No, the situation at higher orders will be worse; see open $c\bar{c}$ production

- Is it due to collinear factorisation? Do we need to include TMD effects?
negative cross-sections - sources?

What are potential sources for negative cross-sections?:

- is it due to failure of theoretical models (NRQCD etc.) for quarkonia?
 → No, it is a more general problem; see open c\bar{c} production
- is it due to truncation of fixed order calculation? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross-sections?
 → No, the situation at higher orders will be worse; see open c\bar{c} production
- is it due to collinear factorisation? Do we need to include TMD effects? (see TMD side)
- is it due to improper choices of renormalisation μ_R and factorisation μ_F scales?
What are potential sources for negative cross-sections?:

- is it due to failure of theoretical models (NRQCD etc.) for quarkonia?
 → No, it is a more general problem; see open $c\bar{c}$ production

- is it due to truncation of fixed order calculation? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross-sections?
 → No, the situation at higher orders will be worse; see open $c\bar{c}$ production

- is it due to collinear factorisation? Do we need to include TMD effects? (see TMD side)

- is it due to improper choices of renormalisation μ_R and factorisation μ_F scales?

- or is it due to Parton Distribution Functions (PDFs)?
collinear factorisation - η_c at NLO - hadronic cross-section

process

$$p + p \rightarrow \eta_c + X$$ \hspace{1cm} (2)

hadronic cross-section

$$\sigma_{pp} = \sum_{ij} \int dx_1 dx_2 \ f_i/p(x_1, \mu_F) f_j/p(x_2, \mu_F) \ \hat{\sigma}_{ij}(\mu_R, \mu_F, x_1, x_2, \hat{s} = s \ x_1 x_2)$$ \hspace{1cm} (3)

hadronic cross-section has dependence on the scales (μ_R, μ_F, s)

three channels contributing to η_c production at NLO; left - gg channel, middle - $q\bar{q}$ channel, right - qg channel
J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992

J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992

G. Schuler publishes his Review in 1994

M. Mangano comes to same conclusions as G. Schuler in his 1996 Proceedings

A. Petrelli et al. confirm result by J. Kühn & E. Mirkes in 1997

I confirm that everybody above was correct ;-)

Melih A. Ozcelik (IPNO)
J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992

G. Schuler publishes his Review in 1994

- confirms result by J. Kühn & E. Mirkes

- points out issues with negative cross-sections at high energies
- demonstrates that for some PDF choices there is strong/weak scale dependence

M. Mangano comes to same conclusions as G. Schuler in his 1996 Proceedings

A. Petrelli et al. confirm result by J. Kühn & E. Mirkes in 1997

I confirm that everybody above was correct ;-)

Melih A. Ozcelik (IPNO)
J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992

G. Schuler publishes his Review in 1994
- confirms result by J. Kühn & E. Mirkes
- points out issues with negative cross-sections at high energies
\(\eta_c \) at NLO - historical development

- J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992
- G. Schuler publishes his Review in 1994
 \[\text{[G. Schuler, arXiv:hep-ph/9403387]} \]
 - confirms result by J. Kühn & E. Mirkes
 - points out issues with negative cross-sections at high energies
 - demonstrates that for some PDF choices there is strong/weak scale dependence

M. Mangano comes to same conclusions as G. Schuler in his 1996 Proceedings
A. Petrelli et al. confirm result by J. Kühn & E. Mirkes in 1997
I confirm that everybody above was correct ;-)

 - confirms result by J. Kühn & E. Mirkes
 - points out issues with negative cross-sections at high energies
 - demonstrates that for some PDF choices there is strong/weak scale dependence

J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992

G. Schuler publishes his Review in 1994
- confirms result by J. Kühn & E. Mirkes
- points out issues with negative cross-sections at high energies
- demonstrates that for some PDF choices there is strong/weak scale dependence

M. Mangano comes to same conclusions as G. Schuler in his 1996 Proceedings

A. Petrelli et al. confirm result by J. Kühn & E. Mirkes in 1997

- confirms result by J. Kühn & E. Mirkes
- points out issues with negative cross-sections at high energies
- demonstrates that for some PDF choices there is strong/weak scale dependence

I confirm that everybody above was correct ;-)
appearance of negative cross-sections for quarkonia at high energies
- appearance of negative cross-sections for quarkonia at high energies
- Schuler identifies two potential sources
appearance of negative cross-sections for quarkonia at high energies
Schuler identifies two potential sources
 - small x-behaviour of gluon and sea-quark distributions
appearance of negative cross-sections for quarkonia at high energies

Schuler identifies two potential sources

- small x-behaviour of gluon and sea-quark distributions
- behaviour of partonic cross-sections away from threshold
Most of the remarks which follow have already been made by G. Schuler in his ’94 review. Schuler at the time had available the full NLO corrections to η production, as well as the leading small-x behaviour of the χ cross sections. It is a pity that those remarks have passed almost unnoticed in the community!

Most of the remarks which follow have already been made by G. Schuler in his ’94 review \[4\]. Schuler at the time had available the full NLO corrections to η production, as well as the leading small-x behaviour of the χ cross sections. It is a pity that those remarks have passed almost unnoticed in the community!

- arrives to similar conclusions that steeper gluon PDF choices will give better results because real corrections become less relevant (see Schuler’s table) at high hadronic energies
Most of the remarks which follow have already been made by G. Schuler in his ’94 review [4]. Schuler at the time had available the full NLO corrections to \(\eta \) production, as well as the leading small-\(x \) behaviour of the \(\chi \) cross sections. It is a pity that those remarks have passed almost unnoticed in the community!

\(\bullet \) arrives to similar conclusions that steeper gluon PDF choices will give better results because real corrections become less relevant (see Schuler’s table) at high hadronic energies

\(\bullet \) confirms that partonic limit away from threshold has the general structure,

\[
\lim_{z \to 0} \hat{\sigma}_{gg} = 2C_A \frac{\alpha_s}{\pi} \hat{\sigma}_{\text{Born}} \left(\log \frac{M^2}{\mu_F^2} - C_J \right), \quad (4)
\]

\[
\lim_{z \to 0} \hat{\sigma}_{qg} = C_F \frac{\alpha_s}{\pi} \hat{\sigma}_{\text{ Born}} \left(\log \frac{M^2}{\mu_F^2} - C_J \right), \quad (5)
\]

where \(C_J \) is a process-dependent quantity
default scale choice is $\mu_R = \mu_F = 2m_c = 3\text{GeV}$
default scale choice is $\mu_R = \mu_F = 2m_c = 3\text{GeV}$

most PDFs are parametrised at a scale close to the mass of the charm quark meaning that the PDFs will strongly depend on the input of the initial parametrisation, hence no sufficient evolution of DGLAP equations

default scale choice is \(\mu_R = \mu_F = 2m_c = 3\text{GeV} \)

most PDFs are parametrised at a scale close to the mass of the charm quark meaning that the PDFs will strongly depend on the input of the initial parametrisation, hence no sufficient evolution of DGLAP equations

let’s make a comparison with \(\eta_b \), why do we not encounter negative cross-sections?
η_c versus η_b

comparison of η_b differential cross-section at NLO with different choices of μ_R and μ_F with CTEQ6M

\(\eta_c \) versus \(\eta_b \)

- \(\eta_b \) differential cross-section is much more stable than in case of \(\eta_c \). The NLO result is the same for both particles. With only the mass increasing from \(m_c \) to \(m_b \), we can describe three effects:
η_c versus η_b

- η_b differential cross-section is much more stable than in case of η_c. The NLO result is the same for both particles. With only the mass increasing from m_c to m_b, we can describe three effects:
 - the dependence of the cross-section on \sqrt{s} is now stretched out by the ratio the mass changed
η_c versus η_b

- η_b differential cross-section is much more stable than in case of η_c. The NLO result is the same for both particles. With only the mass increasing from m_c to m_b, we can describe three effects:
 - the dependence of the cross-section on \sqrt{s} is now stretched out by the ratio the mass changed
 - the rescaling of strong coupling constant α_s; higher scales mean lower coupling \rightarrow QCD corrections become weaker, hence the NLO cross-section will be closer to LO
 - evolution of the PDFs from the scale of η_c to η_b. Evolution leads to steeper gluon PDFs, hence real corrections are further suppressed \rightarrow essentially ensuring the positivity of the η_b cross-section

Note however that the NLO result starts to deviate from LO at large \sqrt{s}.
η_c versus η_b

- η_b differential cross-section is much more stable than in case of η_c. The NLO result is the same for both particles. With only the mass increasing from m_c to m_b, we can describe three effects:
 - the dependence of the cross-section on \sqrt{s} is now stretched out by the ratio the mass changed
 - the rescaling of strong coupling constant α_s; higher scales mean lower coupling \rightarrow QCD corrections become weaker, hence the NLO cross-section will be closer to LO
 - the third effect is evolution of the PDFs from the scale of η_c to η_b. Evolution leads to steeper gluon PDFs, hence real corrections are further surpressed
\(\eta_c \) versus \(\eta_b \)

- \(\eta_b \) differential cross-section is much more stable than in case of \(\eta_c \). The NLO result is the same for both particles. With only the mass increasing from \(m_c \) to \(m_b \), we can describe three effects:
 - the dependence of the cross-section on \(\sqrt{s} \) is now stretched out by the ratio the mass changed
 - the rescaling of strong coupling constant \(\alpha_s \); higher scales mean lower coupling \(\rightarrow \) QCD corrections become weaker, hence the NLO cross-section will be closer to LO
 - the third effect is evolution of the PDFs from the scale of \(\eta_c \) to \(\eta_b \). Evolution leads to steeper gluon PDFs, hence real corrections are further surpressed
 \(\rightarrow \) essentially ensuring the positivity of the \(\eta_b \) cross-section
η_c versus η_b

- η_b differential cross-section is much more stable than in case of η_c. The NLO result is the same for both particles. With only the mass increasing from m_c to m_b, we can describe three effects:
 - the dependence of the cross-section on \sqrt{s} is now stretched out by the ratio the mass changed
 - the rescaling of strong coupling constant α_s; higher scales mean lower coupling \rightarrow QCD corrections become weaker, hence the NLO cross-section will be closer to LO
 - the third effect is evolution of the PDFs from the scale of η_c to η_b. Evolution leads to steeper gluon PDFs, hence real corrections are further suppressed \rightarrow essentially ensuring the positivity of the η_b cross-section
 - note however that the NLO result start to deviate from LO at large \sqrt{s}
What are potential sources for negative cross-sections?:

- is it due to failure of theoretical models (NRQCD etc.) for quarkonia? → No, it is a more general problem; see open $c\bar{c}$ production
- is it due to truncation of fixed-order calculation? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross-sections? → No, the situation at higher orders will be worse; see open $c\bar{c}$ production
- do we even need to include k_T-Resummation? (see TMD side)
- is it due to bad choices of renormalisation μ_R and factorisation μ_F scales? → No, since the η_c is a low scale process, it depends crucially on the PDF parametrisation; no physical reason to go to artificially large scales
- or is it due to Parton Distribution Functions (PDFs)?
negative cross-sections - sources?

- What are potential sources for negative cross-sections?:
 - is it due to failure of theoretical models (NRQCD etc.) for quarkonia? → No, it is a more general problem; see open $c\bar{c}$ production
 - is it due to truncation of fixed-order calculation? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross-sections? → No, the situation at higher orders will be worse; see open $c\bar{c}$ production
 - do we even need to include k_T-Resummation? (see TMD side)
 - is it due to bad choices of renormalisation μ_R and factorisation μ_F scales? → No, since the η_c is a low scale process, it depends crucially on the PDF parametrisation; no physical reason to go to artificially large scales
 - or is it due to Parton Distribution Functions (PDFs)?
as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result

we will put this into practice and compute the K-factor for 5 different PDF choices at $y=0$. We will plot the energy-dependence of the K-factor for the PDFs:
PDF parametrisation

- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result.
- we will put this into practice and compute the K-factor for 5 different PDF choices at $y=0$. We will plot the energy-dependence of the K-factor for the PDFs:
 - CT14nlo_NF3

Melih A. Ozcelik (IPNO)
PDF parametrisation

- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
- we will put this into practice and compute the K-factor for 5 different PDF choices at \(y=0 \). We will plot the energy-dependence of the K-factor for the PDFs:
 - CT14nlo_NF3
 - NNPDF31sx_nlo_as_0118
PDF parametrisation

- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
- we will put this into practice and compute the K-factor for 5 different PDF choices at $y=0$. We will plot the energy-dependence of the K-factor for the PDFs:
 - CT14nlo_NF3
 - NNPDF31sx_nlo_as_0118
 - NNPDF31sx_nlonllx_as_0118

In order to discriminate between the PDF choices we will use two different scale configurations:
- $\mu_R = \mu_F = 2m_c = 3\text{GeV}$ - default scale choice
- $\mu_R = m_c = 1.5\text{GeV}$, $\mu_F = 2m_c = 3\text{GeV}$ - lower renormalisation choice leads to larger $\alpha_s \rightarrow$ real emission contributions become more important; the objective is to see the impact of the PDFs on the real corrections
as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result

we will put this into practice and compute the K-factor for 5 different PDF choices at $y=0$. We will plot the energy-dependence of the K-factor for the PDFs:

- CT14nlo_NF3
- NNPDF31sx_nlo_as_0118
- NNPDF31sx_nlonllx_as_0118
- MRS(A')
PDF parametrisation

- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
- we will put this into practice and compute the K-factor for 5 different PDF choices at $y=0$. We will plot the energy-dependence of the K-factor for the PDFs:
 - CT14nlo_NF3
 - NNPDF31sx_nlo_as_0118
 - NNPDF31sx_nlonllx_as_0118
 - MRS(A')
 - MRS(G)

in order to discriminate between the PDF choices we will use two different scale configurations:

$$\mu_R = \mu_F = 2m_c = 3\text{GeV} - \text{default scale choice}$$

$$\mu_R = m_c = 1.5\text{GeV}, \mu_F = 2m_c = 3\text{GeV} - \text{lower renormalisation choice leads to larger } \alpha_s \rightarrow \text{real emission contributions become more important; the objective is to see the impact of the PDFs on the real corrections}$$
as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result

we will put this into practice and compute the K-factor for 5 different PDF choices at y=0. We will plot the energy-dependence of the K-factor for the PDFs:

- CT14nlo_NF3
- NNPDF31sx_nlo_as_0118
- NNPDF31sx_nlonllx_as_0118
- MRS(A')
- MRS(G)

in order to discriminate between the PDF choices we will use two different scale configurations:
as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result

we will put this into practice and compute the K-factor for 5 different PDF choices at \(y=0 \). We will plot the energy-dependence of the K-factor for the PDFs:

- CT14nlo_NF3
- NNPDF31sx_nlo_as_0118
- NNPDF31sx_nlonllx_as_0118
- MRS(A')
- MRS(G)

in order to discriminate between the PDF choices we will use two different scale configurations:

- \(\mu_R = \mu_F = 2m_c = 3\text{GeV} \) - default scale choice
PDF parametrisation

- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
- we will put this into practice and compute the K-factor for 5 different PDF choices at $y=0$. We will plot the energy-dependence of the K-factor for the PDFs:
 - CT14nlo_NF3
 - NNPDF31sx_nlo_as_0118
 - NNPDF31sx_nlonllx_as_0118
 - MRS(A')
 - MRS(G)
- in order to discriminate between the PDF choices we will use two different scale configurations:
 - $\mu_R = \mu_F = 2m_c = 3\text{GeV}$ - default scale choice
 - $\mu_R = m_c = 1.5\text{GeV}$, $\mu_F = 2m_c = 3\text{GeV}$
 - lower renormalisation choice leads to larger $\alpha_s \rightarrow$ real emission contributions become more important; the objective is to see the impact of the PDFs on the real corrections
K-factor at $y = 0$ - $\mu_R = \mu_F = 2m_c = 3\text{GeV}$

K-factor of η_c production at $y=0$ with $n_f=3$, $\mu_r=\mu_f=2m_c=3\text{GeV}$

K-factor at $y=0$ as a function of energy and with different PDF choices. Default scale choice used $\mu_R = \mu_F = 2m_c = 3\text{GeV}$.

Melih A. Ozcelik (IPNO)
K-factor at $y = 0$ - $\mu_R = m_c = 1.5\text{GeV}, \mu_F = 2m_c = 3\text{GeV}$

K-factor of η_c production at $y=0$ with $n_f=3$, $\mu_r=m_c$, $\mu_f=2m_c$

![Graph of K-factor of η_c production](image)

K-factor at $y=0$ as a function of energy and with different PDF choices.

Alternative scale choice used $\mu_R = m_c = 1.5\text{GeV}, \mu_F = 2m_c = 3\text{GeV}$.

MRS(G), $g(x) \sim 1/x^{1.30037}$

MRS(A'), $g(x) \sim 1/x^{1.14215}$
Uncertainty of K-factor at $y = 0$ - 100 Replicas of NNPDF31_nlo_as_0118

- use standard NNPDF31_nlo_as_0118 set and run over 100 Replicas
Uncertainty of K-factor at $y = 0$ - 100 Replicas of NNPDF31_nlo_as_0118

- use standard NNPDF31_nlo_as_0118 set and run over 100 Replicas
- difference between NNPDF31_nlo_as_0118 and NNPDF31sx_nlo_as_0118 is that the latter one with small x extension has been probed at a minimally lower scale Q such that in the Replica generation the 2.7GeV^2 bin has been taken into account which turns out to be crucial
Uncertainty of K-factor at $y = 0$ - 100 Replicas of NNPDF31_nlo_as_0118

- use standard NNPDF31_nlo_as_0118 set and run over 100 Replicas
- difference between NNPDF31_nlo_as_0118 and NNPDF31sx_nlo_as_0118 is that the latter one with small x extension has been probed at a minimally lower scale Q such that in the Replica generation the 2.7GeV^2 bin has been taken into account which turns out to be crucial
- expect very large K-factor uncertainty associated to NNPDF31_nlo_as_0118 PDF choice
Uncertainty of K-factor at $y = 0$ - 100 Replicas of NNPDF31_nlo_as_0118

- use standard NNPDF31_nlo_as_0118 set and run over 100 Replicas
- difference between NNPDF31_nlo_as_0118 and NNPDF31sx_nlo_as_0118 is that the latter one with small x extension has been probed at a minimally lower scale Q such that in the Replica generation the $2.7 GeV^2$ bin has been taken into account which turns out to be crucial
- expect very large K-factor uncertainty associated to NNPDF31_nlo_as_0118 PDF choice
- we will try with two different scale choices as before, set $y = 0$ and use $\sqrt{s} = 115$ GeV, 7 TeV and 14 TeV
Figure: Strong variation of K-factor over replica number of NNPDF31_nlo_as_0118 ($y=0$, $\sqrt{s} = 7$ TeV, default/alternative scale choice)

default ($\mu_R = \mu_F = 2m_c = 3$GeV): $\rightarrow K = 0.2 \pm 0.2$

alternative ($\mu_R = m_c = 1.5$GeV, $\mu_F = 2m_c = 3$GeV): $\rightarrow K = -0.8 \pm 0.3$
Figure: Strong variation of \(K \)-factor over replica number of NNPDF31_nlo_as_0118 (\(y=0, \sqrt{s} = 14 \) TeV, default/alternative scale choice)

default (\(\mu_R = \mu_F = 2m_c = 3 \)GeV): \(\rightarrow K = -0.1 \pm 0.4 \)

alternative (\(\mu_R = m_c = 1.5 \)GeV, \(\mu_F = 2m_c = 3 \)GeV): \(\rightarrow K = -1.1 \pm 0.5 \)
K-factor - default scale - summary so far

<table>
<thead>
<tr>
<th>PDF choice</th>
<th>$\sqrt{s} = 7$ TeV</th>
<th>$\sqrt{s} = 14$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRS(G)</td>
<td>1.26</td>
<td>1.21</td>
</tr>
<tr>
<td>MRS(A')</td>
<td>0.70</td>
<td>0.61</td>
</tr>
<tr>
<td>NNPDF31sx_nlonllx_as_0118</td>
<td>0.68</td>
<td>0.59</td>
</tr>
<tr>
<td>y = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT14nlo_NF3</td>
<td>0.54</td>
<td>0.44</td>
</tr>
<tr>
<td>NNPDF31sx_nlo_as_0118</td>
<td>0.51</td>
<td>0.37</td>
</tr>
<tr>
<td>y = 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNPDF31_nlo_as_0118</td>
<td>0.2 ± 0.2</td>
<td>-0.1 ± 0.4</td>
</tr>
</tbody>
</table>

√s = 7 TeV

√s = 14 TeV
can we improve the K-factor for NNPDF31_nlo_as_0118 PDF set by applying constraints?
can we improve the K-factor for NNPDF31_nlo_as_0118 PDF set by applying constraints?

- strategy is to discard all replicas that gave unphysical $d\sigma/dy < 0$ in a given set of results. We will assign weight 0 to each such replica.
can we improve the K-factor for NNPDF31_nlo_as_0118 PDF set by applying constraints?

strategy is to discard all replicas that gave unphysical $d\sigma/dy < 0$ in a given set of results. We will assign weight 0 to each such replica

we will use the results for $y = 0$ and $\sqrt{s} = 14$ TeV with default scale choice
discarding all Replicas that yielded unphysical $d\sigma/dy < 0$
→ around half of the Replicas remained.

<table>
<thead>
<tr>
<th>result set</th>
<th>before re-weighting</th>
<th>after re-weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{s} = 7$ TeV & $y = 0$</td>
<td>0.2 ± 0.2</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>$\sqrt{s} = 7$ TeV & $y = 1$</td>
<td>0.2 ± 0.4</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>$\sqrt{s} = 7$ TeV & $y = 2$</td>
<td>0.2 ± 1.1</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>$\sqrt{s} = 14$ TeV & $y = 0$</td>
<td>−0.1 ± 0.4</td>
<td>0.3 ± 0.1</td>
</tr>
</tbody>
</table>
K-factor - default scale - updated summary

<table>
<thead>
<tr>
<th>PDF choice</th>
<th>$\sqrt{s} = 7$ TeV</th>
<th>$\sqrt{s} = 14$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$y = 0$</td>
<td>$y = 1$</td>
</tr>
<tr>
<td>MRS(G)</td>
<td>1.26</td>
<td>1.27</td>
</tr>
<tr>
<td>MRS(A’)</td>
<td>0.70</td>
<td>0.72</td>
</tr>
<tr>
<td>NNPDF31sx_nlonllx_as_0118</td>
<td>0.68</td>
<td>0.71</td>
</tr>
<tr>
<td>CT14nlo_NF3</td>
<td>0.54</td>
<td>0.57</td>
</tr>
<tr>
<td>NNPDF31sx_nlo_as_0118</td>
<td>0.51</td>
<td>0.52</td>
</tr>
<tr>
<td>NNPDF31_nlo_as_0118 (re-weighted)</td>
<td>0.4 ± 0.1</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>NNPDF31_nlo_as_0118 (equal weight)</td>
<td>0.2 ± 0.2</td>
<td>0.2 ± 0.4</td>
</tr>
</tbody>
</table>
next step & further constraints on PDFs from Quarkonium Physics

- re-weighted cross-sections are not compatible with sx and NLLx
next step & further constraints on PDFs from Quarkonium Physics

- re-weighted cross-sections are not compatible with sx and NLLx
 → re-do exercise with sx and NLLx
next step & further constraints on PDFs from Quarkonium Physics

- re-weighted cross-sections are not compatible with sx and NLLx
 → re-do exercise with sx and NLLx
- impose non-negativity using different energies \sqrt{s} and rapidities y
next step & further constraints on PDFs from Quarkonium Physics

- re-weighted cross-sections are not compatible with sx and $NLLx$
 \rightarrow re-do exercise with sx and $NLLx$
- impose non-negativity using different energies \sqrt{s} and rapidities y
- improve re-weighting by assigning higher weights to Replicas that yield K-factors close to unity rather than sharp 1 and 0 re-weighting
next step & further constraints on PDFs from Quarkonium Physics

- re-weighted cross-sections are not compatible with sx and NLLx
 - → re-do exercise with sx and NLLx
- impose non-negativity using different energies \sqrt{s} and rapidities y
- improve re-weighting by assigning higher weights to Replicas that yield K-factors close to unity rather than sharp 1 and 0 re-weighting
- further constraints for PDFs that we can take from Quarkonium Physics are
next step & further constraints on PDFs from Quarkonium Physics

- re-weighted cross-sections are not compatible with sx and NLLx
 \rightarrow re-do exercise with sx and NLLx
- impose non-negativity using different energies \sqrt{s} and rapidities y
- improve re-weighting by assigning higher weights to Replicas that yield K-factors close to unity rather than sharp 1 and 0 re-weighting
- further constraints for PDFs that we can take from Quarkonium Physics are
 - at fixed rapidity, the differential cross-section must increase with \sqrt{s} energy
next step & further constraints on PDFs from Quarkonium Physics

- re-weighted cross-sections are not compatible with sx and NLLx
 → re-do exercise with sx and NLLx
- impose non-negativity using different energies \sqrt{s} and rapidities y
- improve re-weighting by assigning higher weights to Replicas that yield K-factors close to unity rather than sharp 1 and 0 re-weighting
- further constraints for PDFs that we can take from Quarkonium Physics are
 - at fixed rapidity, the differential cross-section must increase with \sqrt{s} energy
 - at fixed \sqrt{s} energy, the differential cross-section must decrease with increasing rapidity; it must follow the shape of the leading order $(2 \rightarrow 1$ process)
next step & further constraints on PDFs from Quarkonium Physics

- re-weighted cross-sections are not compatible with s_x and NLLx
 - re-do exercise with s_x and NLLx
- impose non-negativity using different energies \sqrt{s} and rapidities y
- improve re-weighting by assigning higher weights to Replicas that yield K-factors close to unity rather than sharp 1 and 0 re-weighting
- further constraints for PDFs that we can take from Quarkonium Physics are
 - at fixed rapidity, the differential cross-section must increase with \sqrt{s} energy
 - at fixed \sqrt{s} energy, the differential cross-section must decrease with increasing rapidity; it must follow the shape of the leading order ($2 \rightarrow 1$ process)

→ work on-going
\[\sigma \propto H \times C[f_1^g f_1^g] \]

\[C[f_1^g f_1^g] = \int \frac{d^2 \vec{b}_T}{(2\pi)^2} e^{i \vec{b}_T \cdot \vec{q}_T} \tilde{f}_1^g \left(x_1, \vec{b}_T; \zeta, \mu\right) \tilde{f}_1^g \left(x_2, \vec{b}_T; \zeta, \mu\right) \]

\[\tilde{f}_1^g/A \left(x, \vec{b}_T; \zeta, \mu\right) = \sum_{j=q,\bar{q},g} \int_{x}^{1} \frac{d\tilde{x}}{\tilde{x}} \tilde{C}_{g/j} \left(\tilde{x}, \vec{b}_T; \zeta, \mu\right) f_{j/A} \left(x/\tilde{x}; \mu\right) \]

\[\tilde{C}_{g/g} = \delta(1-x) + \frac{\alpha_s}{2\pi} \left[C_A \delta(1-x) \left(-\frac{1}{2}L_T^2 + L_T \ln \frac{\mu^2}{\zeta} - \frac{\pi^2}{12}\right) \right. \]

\[- L_T \left(P_{g/g} - \delta(1-x) \frac{\beta_0}{2} \right) \]

\[\tilde{C}_{g/q} = \frac{\alpha_s}{2\pi} \left[-L_T P_{g/q} + C_F x \right] \]

\[L_T = \ln \frac{\mu^2 b_T^2}{4e^{-2\gamma_E}} \]

(7)
TMD vs. collinear factorisation

- TMD factorisation is more universal than collinear factorisation
TMD vs. collinear factorisation

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part H (*process-dependent*)
TMD vs. collinear factorisation

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part H (process-dependent)
 - real and mixed real-virtual corrections are included inside the TMDPDFs (process-independent)

\[\frac{d\sigma}{dy} > 0, \quad \text{always (universal property)!} \]

However, we encounter at η_{cs} scales, that

\[C[f_1g_1f_1g_1] < 0 \]

\[\rightarrow \]

constrain PDFs such that

\[C[f_1g_1f_1g_1] > 0 \text{ at } \eta_{cs} \text{ scales} \]

re-weighting PDFs with similar criteria if the re-weighted Replicas obtained by imposing $\frac{d\sigma}{dy} > 0$ (+ good shape behaviour) in collinear factorisation more or less coincide with $C[f_1g_1f_1g_1]$, this would mean that we are on the right track to use quarkonium as quantitative gluon probes

\[\rightarrow \text{work ongoing} \]
TMD vs. collinear factorisation

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part H (process-dependent)
 - real and mixed real-virtual corrections are included inside the TMDPDFs (process-independent)
- with positivity constraint $d\sigma/dy > 0$, we have that $\mathcal{C}[f_1^g f_1^g] > 0$ always (universal property)!
TMD vs. collinear factorisation

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part H (process-dependent)
 - real and mixed real-virtual corrections are included inside the TMDPDFs (process-independent)
- with positivity constraint $d\sigma/dy > 0$, we have that $C[f_1^g f_1^g] > 0$
 - always (universal property)!
 - however we encounter at η_c scales, that $C[f_1^g f_1^g] < 0$
TMD vs. collinear factorisation

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part H (*process-dependent*)
 - real and mixed real-virtual corrections are included inside the TMDPDFs (*process-independent*)
- with positivity constraint $d\sigma/dy > 0$, we have that $C[f^g_1 f^g_1] > 0$ always (universal property)!
 - however we encounter at η_c scales, that $C[f^g_1 f^g_1] < 0$
 - \rightarrow constrain PDFs such that $C[f^g_1 f^g_1] > 0$ at η_c scales
TMD vs. collinear factorisation

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part H (process-dependent)
 - real and mixed real-virtual corrections are included inside the TMDPDFs (process-independent)
- with positivity constraint $d\sigma/dy > 0$, we have that $C[f_1^g f_1^g] > 0$ always (universal property)!
 - however we encounter at η_c scales, that $C[f_1^g f_1^g] < 0$
 - \rightarrow constrain PDFs such that $C[f_1^g f_1^g] > 0$ at η_c scales
- re-weighting PDFs with similar criteria
TMD vs. collinear factorisation

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part H (process-dependent)
 - real and mixed real-virtual corrections are included inside the TMD PDFs (process-independent)
- with positivity constraint $d\sigma/dy > 0$, we have that $C[f_1^g f_1^g] > 0$ always (universal property)!
 - however we encounter at η_c scales, that $C[f_1^g f_1^g] < 0$
 - \rightarrow constrain PDFs such that $C[f_1^g f_1^g] > 0$ at η_c scales
- re-weighting PDFs with similar criteria
- if the re-weighted Replicas obtained by imposing $d\sigma/dy > 0$ (+ good shape behaviour) in collinear factorisation more or less coincide with $C[f_1^g f_1^g]$, this would mean that we are on the right track to use quarkonium as quantitative gluon probes
TMD vs. collinear factorisation

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part H (*process-dependent*)
 - real and mixed real-virtual corrections are included inside the TMDPDFs (*process-independent*)
- with positivity constraint $d\sigma/dy > 0$, we have that $C[f_1^g f_1^g] > 0$ always (universal property)!
 - however we encounter at η_c scales, that $C[f_1^g f_1^g] < 0$
 - → constrain PDFs such that $C[f_1^g f_1^g] > 0$ at η_c scales
- re-weighting PDFs with similar criteria
- if the re-weighted Replicas obtained by imposing $d\sigma/dy > 0$ (+ good shape behaviour) in collinear factorisation more or less coincide with $C[f_1^g f_1^g]$, this would mean that we are on the right track to use quarkonium as quantitative gluon probes
 → work on-going
Backup
Figure: rapidity differential cross-section at LO for different energies, default scale choice, CT14nlo_NF3
Figure: rapidity differential cross-section at NLO for different energies, default scale choice, CT14nlo_NF3
Figure: rapidity differential cross-section at NLO for different energies, alternative scale choice, CT14nlo_NF3
shape of rapidity differential at NLO - NNPDF31sx_nlo_as_0118

Figure: rapidity differential cross-section at NLO for different energies, default/alternative scale choice, NNPDF31sx_nlo_as_0118
Figure: rapidity differential cross-section at NLO for different energies, default/alternative scale choice, NNPDF31sx_nlonllx_as_0118
Quarkonia - three different models

- Colour-Evaporation Model
 - quark and anti-quark colours are summed up at amplitude squared level (evaporation)
 - no spin-projection

- Colour-Octet Model
 - quark and anti-quark pair are in color-octet state
 - heavy quark spins projected on final bound state
 - higher Fock states in NRQCD, higher ν-order

- Colour-Singlet Model
 - quark and anti-quark pair are in color-singlet state
 - heavy quark spins projected on final bound state
 - leading Fock state in NRQCD
gluon-gluon channel

\[\hat{\sigma}_{gg}(s, \hat{s}, \mu_R, \mu_F) = \frac{\alpha_s^2(\mu_R) \pi^2}{96 m_c^5} |R(0)|^2 \delta(1 - z) \]

\[+ \frac{\alpha_s^3(\mu_R) \pi}{1152 m_c^5} |R(0)|^2 \left[\left(-44 + 7\pi^2 + 54 \log \left(\frac{\mu_R^2}{\mu_F^2} \right) \right) \right. \]

\[+ 72 \log \left(1 - \frac{4m_c^2}{s} \right) \left(\log \left(1 - \frac{4m_c^2}{s} \right) - \log \left(\frac{\mu_F^2}{4m_c^2} \right) \right) \delta(1 - z) \]

\[+ 6 \left(24 \left(\frac{\log (1 - z)}{1 - z} \right) \right) \rho \left(1 - (1 - z) z \right)^2 \]

\[+ 12 \left(\frac{1}{1 - z} \right) \rho \frac{\log (z)}{(1 - z)(1 + z)^3} \left(1 - z^2 \left(5 + z \left(2 + z + 3z^3 + 2z^4 \right) \right) \right) \]

\[- \left(\frac{1}{1 - z} \right) \rho \frac{1}{(1 + z)^2} \left(12 + z^2 \left(23 + z \left(24 + 2z + 11z^3 \right) \right) \right) \]

\[+ 12 \left(1 + z^3 \right)^2 \log \left(\frac{z \mu_F^2}{4m_c^2} \right) \right] \]

, where \(z = 4m_c^2/\hat{s} \) and \(\rho = 4m_c^2/s \)
quark-antiquark channel

\[\hat{\sigma}_{q\bar{q}}(\hat{s}, \mu_R) = \frac{16\alpha_s^3(\mu_R)\pi}{81 m_c}\left| R(0) \right|^2 \frac{\hat{s} - 4m_c^2}{\hat{s}^3} \] \hspace{1cm} (9)

quark-gluon channel

\[\hat{\sigma}_{qg}(\hat{s}, \mu_R, \mu_F) = \frac{\alpha_s^3(\mu_R)\pi}{72 m_c^5 \hat{s}^2}\left| R(0) \right|^2 \left(8m_c^4 + 4m_c^2\hat{s} - \hat{s}^2 \right. \]
\[+ 2 \left(8m_c^4 - 4m_c^2\hat{s} + \hat{s}^2 \right) \log \left(1 - \frac{4m_c^2}{\hat{s}} \right) \]
\[+ \hat{s} \left(-4m_c^2 + \hat{s} \right) \log \left(\frac{4m_c^2}{\hat{s}} \right) \]
\[- \left(8m_c^4 - 4m_c^2\hat{s} + \hat{s}^2 \right) \log \left(\frac{\mu_F^2}{\hat{s}} \right) \] \hspace{1cm} (10)
problem of negative cross-sections - $J/\psi, {^1S_0}^{[8]}$ at NLO

comparison of $J/\psi {^1S_0}^{[8]}$ differential cross-section at NLO with different choices of μ_R and μ_F with CTEQ6M [Y. Feng, J.-P. Lansberg, J.X. Wang, Eur.Phys.J. C75 (2015)]
let’s define $z = \frac{M^2}{\hat{s}}$ and $\tau_0 = \frac{M^2}{s}$

LO partonic cross-section and virtual corrections ($2 \rightarrow 1$ process) have $\delta(1 - z)$ function while real corrections ($2 \rightarrow 2$) are complicated functions of z

negative contributions come from real corrections which have interference terms

idea is to use simple toy-models for gluon PDFs and convolute with partonic cross-section; different z-terms will contribute differently at hadronic level
Asymptotic ($\tau_0 = M^2/s \to 0$) behaviour of the proton-proton or proton-antiproton cross section for various forms of the gluon-gluon subprocess ($z = M^2/\hat{s} = \tau_0/\tau$) and two extreme choices of the gluon distribution function. Taken from G. Schuler, Review, 1994

<table>
<thead>
<tr>
<th>$\hat{\sigma}_{gg}(z, M^2)$</th>
<th>$xg(x) \to 1$</th>
<th>$xg(x) \to 1/\sqrt{x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta(1 - z)$</td>
<td>$\ln\left(\frac{1}{\tau_0}\right)$</td>
<td>$\frac{1}{\sqrt{\tau_0}}\ln\left(\frac{1}{\tau_0}\right)$</td>
</tr>
<tr>
<td>z^k</td>
<td>$\frac{1}{k}\ln\left(\frac{1}{\tau_0}\right)$</td>
<td>$\frac{2}{(2k+1)\sqrt{\tau_0}}\ln\left(\frac{1}{\tau_0}\right)$</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{1}{2}\ln^2\left(\frac{1}{\tau_0}\right)$</td>
<td>$\frac{2}{\sqrt{\tau_0}}\ln\left(\frac{1}{\tau_0}\right)$</td>
</tr>
<tr>
<td>$\ln^k\left(\frac{1}{z}\right)$</td>
<td>$\frac{1}{(k+1)(k+2)}\ln^{k+2}\left(\frac{1}{\tau_0}\right)$</td>
<td>$\frac{k!2^{k+1}}{\sqrt{\tau_0}}\ln\left(\frac{1}{\tau_0}\right)$</td>
</tr>
</tbody>
</table>

toymodel $g(x) = 1/x$: real corrections dominate at high energies;
toymodel $g(x) = 1/x^{1.5}$: all contributions have same energy scaling
partonic cross-section away from threshold, \(z \to 0 \)

\[
\lim_{z \to 0} \hat{\sigma}_{gg} = \frac{\alpha_s^3(\mu) \pi}{16 m_c^5} |R(0)|^2 \left(\log \left(\frac{4 m_c^2}{\mu_F^2} \right) - 1 \right), \quad (11)
\]

\[
\lim_{z \to 0} \hat{\sigma}_{q\bar{q}} = 0, \quad (12)
\]

\[
\lim_{z \to 0} \hat{\sigma}_{qg} = \frac{\alpha_s^3(\mu) \pi}{72 m_c^5} |R(0)|^2 \left(\log \left(\frac{4 m_c^2}{\mu_F^2} \right) - 1 \right). \quad (13)
\]
partonic cross-section away from threshold, $z \to 0$

- $\mu_F = m_c$

\[
\lim_{z \to 0} \hat{\sigma}_{gg} = \frac{\alpha_s^3(\mu)\pi}{16m_c^5} |R(0)|^2 (\log(4) - 1) = 0.2 \times \hat{\sigma}_{gg,LO}, \tag{14}
\]

- $\mu_F = 2m_c$

\[
\lim_{z \to 0} \hat{\sigma}_{gg} = \frac{\alpha_s^3(\mu)\pi}{16m_c^5} |R(0)|^2 (-1) = -0.5 \times \hat{\sigma}_{gg,LO}, \tag{15}
\]
hadronic cross-section - dependence on μ_F

- toy model 1 PDF with $f_{g/p}(x) = 1/x$
 - dependence of hadronic cross-section on μ_F
 - for $\mu_F > m_c$, hadronic cross-section is negative
 - for $\mu_F < m_c$, hadronic cross-section is positive
- toy model 2 PDF with $f_{g/p}(x) = 1/x^{1.5}$
 - weak dependence of hadronic cross-section on μ_F
 - cross-section always positive (independent of choice of μ_F)
- similar behaviour for qg channel at high energies because of same asymptotic limit as in gg channel apart from global factor
for non-steep PDF choices, the high-energy hadronic limit is governed by the high-energy partonic limit → strong dependence on factorisation scale μ_F

some values for C_J:
- $C_J = 1$ for pseudo-scalar quarkonia $\eta_{c/b/t}$
- $C_J = 43/27$ for $\chi_{c/b,0}$
- $C_J = 53/36$ for $\chi_{c/b,2}$
- $C_J = 11/12 + \log z$ for Higgs (in infinite-top quark mass limit)

as an aside note, ratio between qg and gg channel in high-energy partonic limit is process-independent (same for Quarkonia and Higgs Physics)

$$\lim_{z \to 0} \frac{\hat{\sigma}_{qg}}{\hat{\sigma}_{gg}} = \frac{C_F}{2C_A} = \frac{2}{9}$$ (16)