

Measurements of inclusive neutral diboson production with ATLAS

Cong GENG
University of Michigan

On behalf of ATLAS collaboration

Outline

- Introduction to ATLAS
- Physics motivation
- Measurement of unfolded invariant mass of 4-leptons at 13 TeV
- ❖ Measurement of $Z\gamma$ with $Z\rightarrow vv$ at 13TeV
- Summary

CERN and LHC

ATLAS detector and data taking

The analysis presented in this talk use the 36.1 fb⁻¹.

Physics motivation

- Search for the neutral TGC coupling which is forbidden in SM
- Sensitive to gluon induced process; potential BSM hint in the quark-loop
- Important channel for constraint on Higgs property.

Measurement of unfolded m(4l) at 13 TeV

Interesting topics:

- ❖ Behavior of full m(4l) spectrum.
- ❖ Measurement of gg → 4l signal strength: K-factor w.r.t current LO/NLO simulation.
- \clubsuit Branching ratio of $Z \rightarrow 41$
- Measurement of off-shell Higgs production: indirect constraint on Higgs width
- ❖ BSM searches in the higher energy region: anomalous neutral TGC (aTGC), BSM Higgs coupling ...

Modelling of each process

\diamondsuit Quark induced 4I (q \rightarrow 4I) process

- Nominal: modelled by "Sherpa-2.2.2 + NNPDF3.0-NNLO", and reweighted with virtual NLO EW effects as function of m(4l).
- Cross checked with: "Powheg-Box v2 (NLO) + CT10 PDF" interfaced with Pythia 8, correction to higher-order precision (NNLO QCD and NLO EW)

\Leftrightarrow Gluon induced 4I (g \rightarrow 4I) process

- Off-Higgs region three components: $gg \rightarrow H^* \rightarrow 4I$, continuum $gg \rightarrow 4I$, interference term.
- Nominal: modelled by "Sherpa-2.2.2 + NNPDF3.0-NNLO", and reweighted to the NLO QCD precision as function of m(4l); An additional 1.2 factor is further applied to account for potential NNLO/NLO effects.
- Cross checked with: "MCFM (LO) + CT10 PDF" interfaced with Pythia 8, correction to NNLO QCD precision

Analysis strategy

Matrix-element discriminant

$$D_{\text{ME}} = \log_{10} \frac{\tilde{M}_{gg \to H^{(*)} \to ZZ^{(*)} \to 4\ell}^{2} \left(p_{1,2,3,4}^{\mu} \right)}{\tilde{M}_{gg \left(\to H^{(*)} \right) \to ZZ^{(*)} \to 4\ell}^{2} \left(p_{1,2,3,4}^{\mu} \right) + 0.1 \cdot \tilde{M}_{q\bar{q} \to ZZ^{(*)} \to 4\ell}^{2} \left(p_{1,2,3,4}^{\mu} \right)}$$

Reco-level SR selections

Object selection	
Electron	Muon
Loose working point $E_T > 7$ GeV and $ \eta < 2.47$ $ z_0 \cdot \sin\theta < 0.5$ mm	Loose working point $p_T > 5$ GeV and $ \eta < 2.7$ [$p_T > 15$ GeV if calorimeter-tagged] $ z_0 \cdot \sin\theta < 0.5$ mm, $ d_0 < 1$ mm

Event level selections

Quadruplet Selection:

- SFOS lepton pairs with smallest and second-smallest |m(II)-mZ| as primary and secondary lepton pair;
- $p_T > 20/15/10$ GeV for leading three leptons; Mass window for 2l pairs.

 J/ψ veto; Lepton isolation; Lepton transverse impact parameter; 4-lepton vertex fit

- Quite pure 4-lepton signal events
 - On-shell Higgs signal S/B ~ 1:2
 - < 5% contamination (non-ZZ) in the m4l>180 GeV region
- Major backgrounds:
 - Fake background → Zjets, ttbar
 - o 4 prompt leptons → VVV, ttV
- ❖ Fiducial phase space definition is close to the reco-level SR selections at particle level.

Unfolded inclusive m(4l)

Reco-level distribution in SR

Differential cross section in Fid region

Interpretation: $gg \rightarrow 4l$ signal strength, Br($Z \rightarrow 4l$)

All the interpretations are done at the particle level

- \square gg \rightarrow 4l signal strength ($\mu_{gg\rightarrow 4l}$)
 - ❖ A likelihood scan in the range m4l ~ [180, 1200] GeV.

Generator	Observed μ _{gg→4l}	Predicted μ _{gg→4l}
Sherpa 2.2.2 with K-factor	1.3 ± 0.5	1.0 ± 0.4
MCFM, LO QCD	2.7 ± 0.9	2.2 ± 0.9

- \square Measurement of Br(Z \rightarrow 4I)
 - ❖ Lowest m(4l) bin [75, 100] GeV
 - All the uncertainties are treated uncorrelated.

$$\mathcal{B}_{Z\to 4\ell} = \frac{N_{\text{fid}} \times (1 - f_{\text{non-res}})}{\sigma_Z \times A_{\text{fid}} \times \mathcal{L}}$$

Measurement	$\mathcal{B}_{Z\to4\ell}/10^{-6}$
ATLAS, $\sqrt{s} = 7$ TeV and 8 TeV	$4.31 \pm 0.34 (stat) \pm 0.17 (syst)$
CMS, $\sqrt{s} = 13 \text{ TeV}$	$4.83^{+0.23}_{-0.22}(\text{stat})^{+0.32}_{-0.29}(\text{syst}) \pm 0.08(\text{theo}) \pm 0.12(\text{lumi})$
ATLAS, $\sqrt{s} = 13 \text{ TeV}$	$4.70 \pm 0.32(\text{stat}) \pm 0.21(\text{syst}) \pm 0.14(\text{lumi})$

Interpretation: off-shell Higgs signal strength

- ❖ The double-differential distribution for "m4l-D_{ME}" is used to constrain the off-shell Higgs production process at high mass (m4l>180 GeV)
- Assuming that the contribution of the box diagram is as predicted by the SM.

 Interference is quite significant between off-shell signal and continuum ggZZ production

$$SBI = S + I + B$$

S: signal (gg \rightarrow H* \rightarrow ZZ); B: background (gg \rightarrow ZZ);

I: interference term

Interference is varied with signal strength. The signal related distribution built (signal strength, μ_{off}):

$$\mu_{off} \cdot S + \sqrt{\mu_{off}} \cdot I + B$$

Observed μ _{off}	Predicted
< 6.5 @ 95% C.L.	< 5.4 @ 95% C.L.

Interpretation: modified Higgs couplings

- Constrain possible BSM modifications of the couplings of H to top quarks (c_t) and gluons (c_g , 0 in the SM).
- \clubsuit Measurements at higher mass (> 180 GeV) can decouple c_t and c_g , as the partonic centre-of-mass energy of the process becomes larger than the top-quark mass.
- ❖ The yield from gg →4l is parameterised as a function of c_t and c_g [J. Exp. Theor. Phys. **120** (2015) 354] .

$$\frac{d\sigma(c_t,c_g)}{dm_{4\ell}} = F_0 + F_1 \left(c_t + c_g \frac{F_{\Delta}(\infty)}{\operatorname{Re} F_{\Delta}(m_t)} \right)^2 + F_3 \left(c_t + c_g \frac{F_{\Delta}(\infty)}{\operatorname{Re} F_{\Delta}(m_t)} \right) + F_2 c_t^2 + F_4 c_t$$

$$\mathsf{SM} : \mathsf{C_t} = \mathsf{1}, \, \mathsf{C_g} = \mathsf{0}$$

❖ First interpretation with ATLAS data → improved the sensitivity compared to previous LHC result (CMS)

Zy production with $Z \rightarrow vv$ at 13TeV

JHEP 12 (2018) 010

13

- \square Advantage of $Z\gamma$ with $Z\rightarrow vv$:
 - \Leftrightarrow Higher branching ratio than Z γ with Z \rightarrow II (e or μ); more sensitive in higher energetic region.
 - \clubsuit Less contamination than $Z\gamma$ with $Z\rightarrow qq$.
- ☐ Measurement in this analysis:
 - ❖ Integrated and differential cross section in a dedicated fiducial phase space.
 - Inclusive (no Njets requirement) and exclusive (Njets=0) results.
- ☐ Searches : anomalous neutral TGC coupling.

Signal region definition

Signal topology: one high-pT and isolated γ , and a large E_T^{miss}

Photons	Leptons	Jets
$E_{\mathrm{T}} > 150 \; \mathrm{GeV}$	$p_{\rm T} > 7~{ m GeV}$	$p_{\rm T} > 50~{ m GeV}$
$ \eta < 2.37,$	$ \eta < 2.47(2.7)$ for $e(\mu)$,	$ \eta < 4.5$
excluding $1.37 < \eta < 1.52$	excluding $1.37 < \eta^e < 1.52$	$\Delta R({\rm jet},\gamma) > 0.3$
Event selection		
$N^{\gamma} = 1$, $N^{e,\mu} = 0$, $E_{\rm T}^{\rm miss} > 150$ GeV, $E_{\rm T}^{\rm miss}$ signif. > 10.5 GeV ^{1/2} , $\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \gamma) > \pi/2$		
Inclusive : $N_{\rm jet} \ge 0$, Exclusive : $N_{\rm jet} = 0$		

- **\Lefth** Lepton number = 0 : suppress events with leptons, e.g. $W\gamma$ with W->lv
- \clubsuit E_T^{miss} >150 GeV and E_T^{miss} -signif >10.5 : suppress the events with fake E_T^{miss}
- Φ Δ Φ (E_T^{miss},γ) : suppress pp \rightarrow W(ev)+X

$$\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}} \, \mathsf{signif}: \, E_{\mathsf{T}}^{\mathsf{miss}} / \sqrt{\Sigma p_{\mathsf{T}}^{\mathsf{jet}} + E_{\mathsf{T}}^{\gamma}}$$

Signal and backgrounds

Modelling of signal

- Sherpa 2.2.2 + NNPDF3.0-NNLO
- Alternative for systematic uncertainty : Sherpa 2.1.1, MG5_aMC@NLO

Backgrounds components

- Wy with W→Iv : 60% arises from τ hadronic decay in W→τv ; misdetection of e/μ
- \circ γ +jet: large E_T^{miss} due to mismeasurement of jet resolution.
- o e/jet $\rightarrow \gamma$: misidentified photon.

Background estimation

- O Wγ and γ+jet : 2 CRs with reversing SR definition (1 lepton, or small E_T^{miss} -sig value);
- o $e \rightarrow \gamma$: fake factor of $e \rightarrow \gamma$
- o jet $\rightarrow \gamma$: 2D sideband, defined with photon isolation and identification.

	$N_{\rm jets} \ge 0$	$N_{\rm jets} = 0$
$N^{W\gamma}$	$650 \pm 40 \pm 60$	$360 \pm 20 \pm 30$
$N^{\gamma+\mathrm{jet}}$	$409 \pm 18 \pm 108$	$219 \pm 10 \pm 58$
$N^{e \to \gamma}$	$320 \pm 15 \pm 45$	$254 \pm 12 \pm 35$
$N^{\mathrm{jet} o \gamma}$	$170 \pm 30 \pm 50$	$140\pm20\pm40$
$N^{Z(\ell\ell)\gamma}$	$40 \pm 3 \pm 3$	$26 \pm 3 \pm 2$
$N_{ m total}^{ m bkg}$	$1580 \pm 50 \pm 140$	$1000 \pm 40 \pm 90$
$N^{\mathrm{sig}}(\mathrm{exp})$	$2328 \pm 4 \pm 135$	$1710 \pm 4 \pm 91$
$N_{ m total}^{ m sig+bkg}$	$3910 \pm 50 \pm 190$	$2710 \pm 40 \pm 130$
$N^{\rm data}({ m obs})$	3812	2599

Result of integrated cross section

Fiducial region is defined at particle level which is close to reco-level SR definition.

$$\sigma_{\text{ext-fid}} = \frac{N - B}{A_{Z\gamma} \cdot C_{Z\gamma} \cdot \int L dt}$$

The likelihood function is defined as

$$\mathcal{L}(\sigma, \theta) = \text{Poisson}(N \mid S(\sigma, \theta) + B(\theta)) \cdot \text{Gaussian}(\theta_0 \mid \theta)$$

Good agreement between measurements and NNLO predictions!

$$\sigma^{\text{ext.fid.}} \text{ [fb]} \qquad \sigma^{\text{ext.fid.}} \text{ [fb]}$$
 Measurement NNLO MCFM Prediction
$$N_{\text{jets}} \geq 0$$

$$83.7^{+3.6}_{-3.5} \text{ (stat.)}^{+6.9}_{-6.2} \text{ (syst.)}^{+1.7}_{-2.0} \text{ (lumi.)} \qquad 78.1 \pm 0.2 \text{ (stat.)} \pm 4.7 \text{ (syst.)}$$

$$N_{\text{jets}} = 0$$

$$52.4^{+2.4}_{-2.3} \text{ (stat.)}^{+4.0}_{-3.6} \text{ (syst.)}^{+1.2}_{-1.1} \text{ (lumi.)} \qquad 55.9 \pm 0.1 \text{ (stat.)} \pm 3.9 \text{ (syst.)}$$

Differential cross sections

- ❖ Good agreement is also observed in the differential measurements w.r.t Sherpa and NNLO MCFM.
- \clubsuit Besides variable E_T^{γ} , differential cross section results of $p_T(vv)$ and Njets are provided in publication.
- The last bin in E_T^{γ} (>600 GeV) is also used for aTGC searches.

Constraint on aTGC parameter

- ❖ The framework of the effective vertex function approach: four CP-violating (h^V1, h^V2) and four CP-conserving (h^V3, h^V4)
- * These parameters would influence the event yield of $\mathbf{Z}\gamma$, especially behaving quite significant in higher energetic region.

$$N_{Z\gamma}^{\text{aTGC}}(h_3^V, h_4^V) = \sigma_{Z\gamma}^{\text{aTGC}}(h_3^V, h_4^V) \cdot C_{Z\gamma} \cdot A_{Z\gamma} \cdot C^{*(\text{parton} \to \text{particle})} \cdot \int L \, ds$$

- \clubsuit Higher E_T^{γ} bin (>600 GeV) is used for the aTGC searches.
- ❖ 3-7 times improved limits w.r.t. ATLAS 8TeV measurement

Parameter	Limit 95% CL	
	Measured	Expected
h_3^{γ}	$(-3.7 \times 10^{-4}, 3.7 \times 10^{-4})$	$(-4.2 \times 10^{-4}, 4.3 \times 10^{-4})$
h_3^Z	$(-3.2 \times 10^{-4}, 3.3 \times 10^{-4})$	$(-3.8 \times 10^{-4}, 3.8 \times 10^{-4})$
h_4^{γ}	$(-4.4 \times 10^{-7}, 4.3 \times 10^{-7})$	$(-5.1 \times 10^{-7}, 5.0 \times 10^{-7})$
h_4^Z	$(-4.5 \times 10^{-7}, 4.4 \times 10^{-7})$	$(-5.3 \times 10^{-7}, 5.1 \times 10^{-7})$

Summary

- ❖4l (mainly ZZ production) and Zγ productions are reported with latest results (using **36.1 fb**⁻¹) : gg→4l signal strength, Br(Z→4l), BSM Higgs coupling, and aTGCs (ZZγ, Zγγ) searches.
- Looking forward more results with full Run-2 dataset!

Thanks!