FCC -ee Flux Concentrator computer models

Pavel Martyshkin

Budker Institute of Nuclear Physics,
Novosibirsk

Classical Flux Concentrator

The small cone diameter defines the peak magnetic field .

The angle of conical cavity defines tapering parameter of magnetic field.

Mechanical structural strength of FC body is not enough.
Fastening of exciting winding is not reliable Life time of device is less of 10^{9} pulses.

- SFC diameter is 100 mm
- SFC length is 100 mm
- Min cone diameter is 7 mm
- Max cone diameter is 52 mm
- 12 turns
- Current profile is a half of sine with a pulse length of $6 \mu \mathrm{~s}$
- Peak field is not higher of 5 Tesla

Spiral Flux Concentrator (SFC) computer model

- Coil has10 turns
- Current profile is a half of sine with a pulse length of $25 \mu \mathrm{~s}$
- Gap between turns is 0.3 mm
- Gap between coil and shield is 1 mm
- Gap between spiral and shield is 1 mm
- Width of first turn is 15.4 mm
- Turns width is 11.4 mm
- Peak field is not higher of 7 Tesla (breakdowns)

SFC with shielding computer model

- SFC spiral diameter is 100 mm
- SFC length is 120 mm
- Min cone diameter is 7 mm
- Max cone diameter is 52 mm

SFC with shielding prototype BINP

FCC-ee Flux Concentrator (FC) computer model

- Elliptical cylinder $120 \times 180 \mathrm{~mm}$
- Total length is 140 mm
- Conical part length is 70 mm
- Min cone diameter is 8 mm
- Max cone diameter is 44 mm
- Cone angle is ≈ 30 degrees
- Cylindrical hole diameter is 70 mm
- Coil has 13 turns
- Current profile is a half of sine with a pulse length of $25 \mu \mathrm{~s}$
- Gap between coil turns is 0.4 mm
- Gap between coil and FC body is 1 mm
- Turns size is $9.6 \times 14 \mathrm{~mm}$

- Elliptical cylinder 120x180 mm
- Total length is 140 mm
- Conical part length is 70 mm
- Min cone diameter is 8 mm
- Max cone diameter is 44 mm
- Cone angle is ≈ 30 degrees
- Cylindrical hole diameter is 70 mm
- Coil has 13 turns
- Current profile is a half of sine with a pulse length of $25 \mu \mathrm{~s}$
- Gap between coil turns is 0.4 mm
- Gap between coil and FC body is 1 mm
- Turns size is $9.6 \times 14 \mathrm{~mm}$
- Target rod (W74Re26) diameter is 4 mm , length is 16 mm
- External target unit diameter is 35 mm

Modifications of target position and FC front face

Model 1.
Target position of end face is -2 mm

Model 2. Modification of FC front face around of a target

Min cone diameter is 8 mm

Longitudinal magnetic field component on axis of Flux Concentrator

Peak field position is 3 mm

Transverse magnetic field components on axis of Flux Concentrator

Peak field position is 8 mm Cone angle is 30°

Cone angle modification with 23° and 45°

- Elliptical cylinder 120x180 mm
- Total length is 140 mm
- Conical part length is 70 mm
- Min cone diameter is 8 mm
- Max cone diameter is 44 mm
- Cone angle is ≈ 25 degrees
- Cylindrical hole diameter is 70 mm
- Coil has 13 turns
- Current profile is a half of sine with a pulse length of $25 \mu \mathrm{~s}$
- Gap between coil turns is 0.4 mm
- Gap between coil and FC body is 1 mm
- Turns size is $9.6 \times 14 \mathrm{~mm}$
- Target (W74Re26) diameter is 88 mm , length is 16 mm
- Gap between target and FC front face is 2 mm

- Elliptical cylinder $120 \times 180 \mathrm{~mm}$
- Total length is 140 mm
- Conical part length is 70 mm
- Min cone diameter is 8 mm
- Max cone diameter is 44 mm
- Cone angle is ≈ 25 degrees
- Cylindrical hole diameter is 70 mm
- Coil has 13 turns
- Current profile is a half of sine with a pulse length of $25 \mu \mathrm{~s}$
- Gap between coil turns is 0.4 mm
- Gap between coil and FC body is 1 mm
- Turns size is $9.6 \times 14 \mathrm{~mm}$
- Target (W74Re26) diameter is 88 mm , length is 16 mm
- Gap between target and FC front face is 2 mm

- Current profile is a half of sine with a pulse length of $25 \mu \mathrm{~s}$
- Gap between coil turns is 0.4 mm
- Gap between coil and FC body is 1 mm
- Turns size is $9.6 \times 14 \mathrm{~mm}$
- Target (W74Re26) diameter is 88 mm , length is 16 mm
- Gap between target and FC front face is 2 mm
- Elliptical cylinder 120x180 mm
- Total length is 140 mm
- Conical part length is 70 mm
- Min cone diameter is 8 mm
- Max cone diameter is 44 mm
- Cone angle is ≈ 25 degrees
- Cylindrical hole diameter is 70 mm
- Coil has 13 turns

Magnetic fields on axis of Flux Concentrator

- Target position end face is -2 mm
- Peak field position is 3 mm

- Target position end face is -2 mm
- Peak field position is 9 mm

- Elliptical cylinder $120 \times 180 \mathrm{~mm}$
- Total length is 140 mm
- Conical part length is 70 mm
- Min cone diameter is 8 mm
- Max cone diameter is 44 mm
- Cone angle is ≈ 25 degrees
- Cylindrical hole diameter is 70 mm
- Coil has 13 turns
- Current profile is a half of sine with a pulse length of $25 \mu \mathrm{~s}$
- Gap between coil turns is 0.4 mm
- Gap between coil and FC body is 1 mm
- Turns size is $9.6 \times 14 \mathrm{~mm}$
- Target (W74Re26) diameter is 10 mm , length is 16 mm
- External target unit diameter is 36 mm
- Gap between target and FC front face is 2 mm

Magnetic fields on axis of Flux Concentrator

- Target position end face is -2 mm
- Peak field position is 3 mm

- Target position end face is -2 mm
- Peak field position is 10 mm

ILC FC Computer model with part of positron production target

Size	Elliptical cylinder 120x180 mm
Total length	170 mm
Conical part length	100 mm
Min cone diameter	16 mm
Max cone diameter	63 mm
Cone angle	24 degrees
Turns number	$16(9,6 \times 12 \mathrm{~mm})$
Cylindrical hole diameter	70 mm

ILC FC Computer model with a positron production target

Longitudinal magnetic field component on axis of Flux Concentrator (top)

Peak current is 25 kA
Pulse length is $25 \mu \mathrm{~s}$
Target ohmic losses is $10 \mathrm{~J} /$ pulse
FC ohmic losses
is $140 \mathrm{~J} / \mathrm{pulse}$

ILC FC magnetic field (on axis)

Transverse magnetic field components on axis of Flux Concentrator (bottom)

VEPP-5 complex Flux Concentrator

