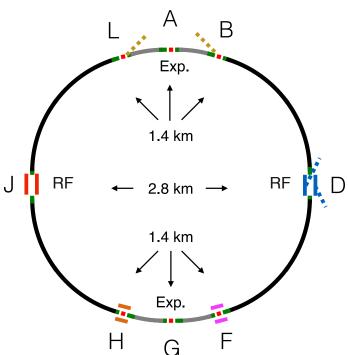

The FCC-ee booster synchrotron A summary and outlook

Bastian Haerer (CERN) for the FCC-ee lattice design team

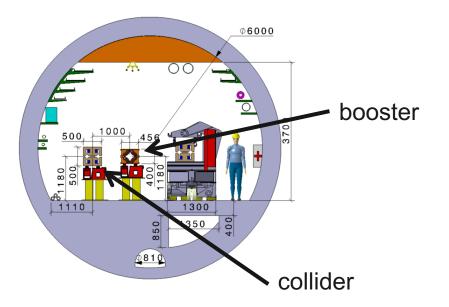
Parameter overview

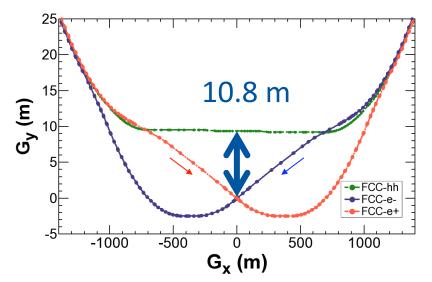

20	GeV	- 182.5	GeV
20	GeV	- 182.5	GeV

Accelerator	FCCee-Z		FCCee-W		FCCee-H		FCCee-tt	
Energy [GeV]	45.6		80		120		182.5	
Type of filling	Full	Top-up	Full	Top-up	Full	Top-up	Full	Top-up
BR # of bunches	166 [,]	40	2	000	3	93		39
BR cycle time [s]	51.74		14.4		7.53		5.49	
#of BR cycles	10	1	10	1	10	1	20	1
Filling time (both species) [sec]	1034.8	103.5	288	28.8	150.6	15.06	219.9	11.0
Injected bunch population [10 ¹⁰]	1.7	0.085	1.5	0.045	1.5	0.045	2.2	0.066

Bastian Haerer bastian.harer@cern.ch

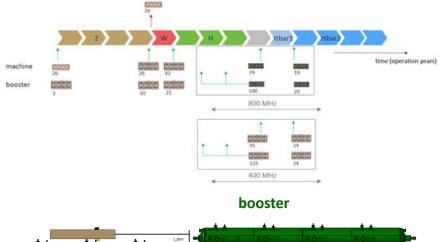
FCC Layout


Circumference:C = 97.75 kmBending radius: $\rho = 10.5 \text{ km}$


2 experimental straight sections (A & G) 2 RF sections in points D and J

Bastian Haerer bastian.harer@cern.ch

Tunnel and IR cavern


The layout of the booster follows the footprint of FCC-hh \rightarrow inside the experiments

Bastian Haerer bastian.harer@cern.ch

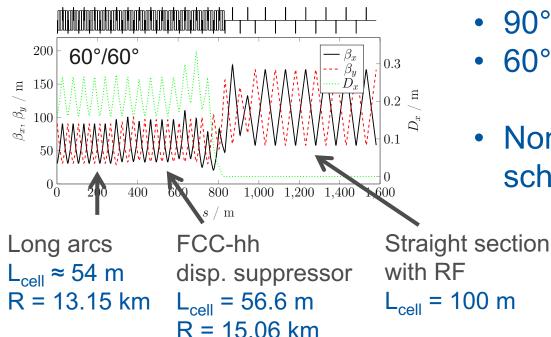
RF system

available for every operation mode

		1.26m		00-0	00-	
				, eé é		
collider	· • •	1.26 m dist	ance			.,

Z W H ttbar₁ ttbar₂ booster2 per boosterper booster per booster 2 booster beam beam beam beams beams Total RF voltage 100 140 750 750 2000 2000 9500 9500 10930 10930 [MV] frequency [MHz] 400 RF voltage [MV] 100 140 750 750 2000 2000 4000 2000 4000 2000 Eacc [MV/m] 5.1 8 9.6 9.6 9.8 10 10 9.8 # cell / cav 1 4 4 4 4 4 Vcavity [MV] 1.92 12 14.4 14.4 14.7 14.7 15 15 52 52 # cavities 12 52 136 136 272 136 272 116 # CM 13 3 13 34 34 68 34 68 34 13 4.5 4.5 4.5 4.5 T operation [K] 4.5 dyn losses/cav [W] 14 11 210 26 202 29 210 30 210 30 stat losses/cav [W] 8 8 8 8 8 Qext 4.4 6.6 1.9 10^{4} 10^{6} 10^{5} Pour [kW] 962 962 368 155 135 800 frequency [MHz] RF voltage [MV] 5500 7500 6930 8930 Eacc[MV/m] 19.8 20 19.8 19.8 # cell / cav 5 5 Vcavity [MV] 18.6 18.75 18.6 18.6 # cavities 296 400 372 480 #CM 74 100 93 120 2 2 T operation [K] O dyn/cav [W] 66 66 10 10 O stat [W] 8 8 4 10⁶ 4 10⁶ Qext Pcav [kW] 196 170

Fani Valchkova-Georgieva



Bastian Haerer bastian.harer@cern.ch

19th FCC-ee Injector Meeting 09 August 2018

Table 1.2: Detailed RF configuration of each machine and booster ring.

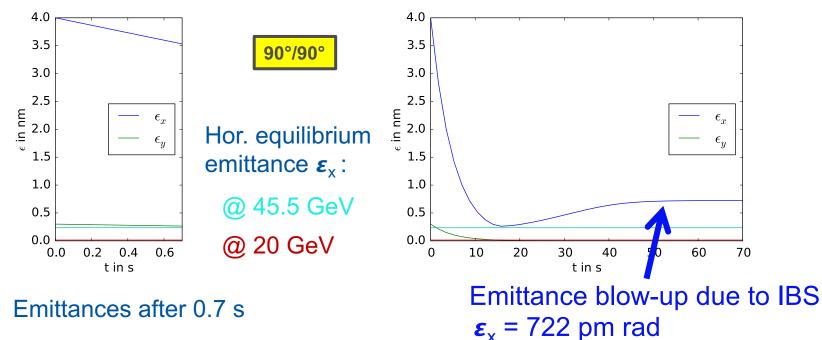
Lattice and optics (version 3)

- 90°/90° optics for H an tt
- 60°/60° optics for *W* and *Z*
- Non-interleaved sextupole scheme, 1 family per plane

No tapering!

Bastian Haerer bastian.harer@cern.ch

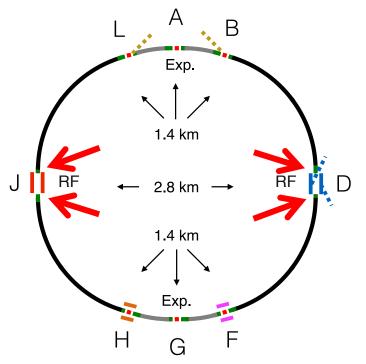
Equilibrium emittances


beam energy	emittance booster	emittance collider	
(in GeV)	(in nm rad)	(in nm rad)	
182.5 120.0 80.0 45.5	1.30 0.55 0.73 0.24	1.48 0.63 0.84 0.24	90°/90° optics 60°/60° optics

Low synchrotron radiation at 20 GeV beam energy: $\rightarrow \epsilon_x = 15 \text{ pm rad } (90^\circ/90^\circ \text{ optics})$ $\tau_x = 10.05 \text{ s}$

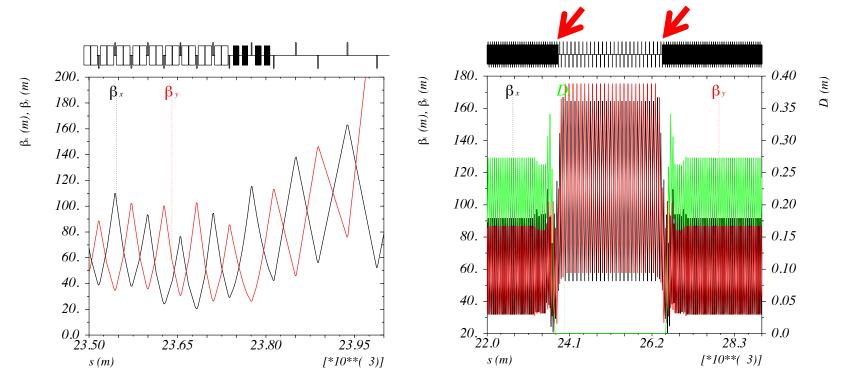
Bastian Haerer bastian.harer@cern.ch

Emittance with IBS

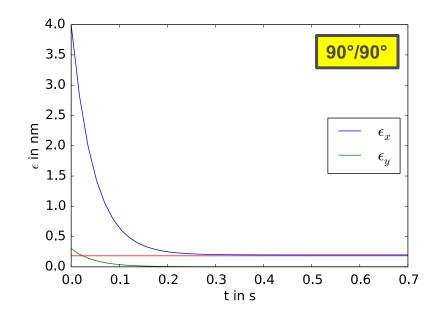

≈ 48 × $\boldsymbol{\varepsilon}_{x}$ without IBS

Bastian Haerer bastian.harer@cern.ch

Wiggler parameters and locations


Wiggler parameters				
B _{pole}	(T)	1.8		
B _{wiggler}	(T)	1.45		
L _{pole}	(cm)	9.5		
g	(cm)	5		
# poles		79		
L	(m)	9.065		
# wigglers		16		
T _x	(s)	0.1		
ε _x (60°/60°)	(pm rad)	235		
ε _x (90°/90°)	(pm rad)	196		

Bastian Haerer bastian.harer@cern.ch


Optics at wiggler location

Bastian Haerer bastian.harer@cern.ch

Emittance evolution with wigglers

New damping time: New eq. emittance:

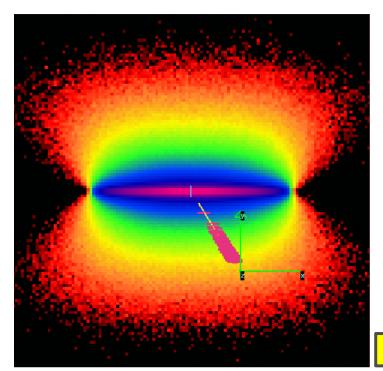
 $\tau_x = 104 \text{ ms}$ $\varepsilon_x = 196 \text{ pm rad}$

Emittances after 7 damping times: $\varepsilon_x = 197 \text{ pm rad}$ $\approx 1.003 \times \varepsilon_x \text{ without IBS}$ $\varepsilon_y = 1.96 \text{ pm rad}$ $\approx 1.000 \times \varepsilon_y \text{ without IBS}^*$

* assuming 1 % coupling

Bastian Haerer bastian.harer@cern.ch

Additional synchrotron radiation


E (GeV)	U ₀ (MeV)		U ₀ (MeV) with wiggler	
20.0	1.3	\rightarrow	126.2	\checkmark
45.5	34.7	\rightarrow	681.3	Х
182.5	9.057.1	\rightarrow	19981.2	Х

- Wigglers need to be ramped down during the acceleration process
- RF voltage was increased to V_{rf} = 140 MV
- Synchrotron radiation power per wiggler: P_w ≈ 2.1 MW (Z, full filling)

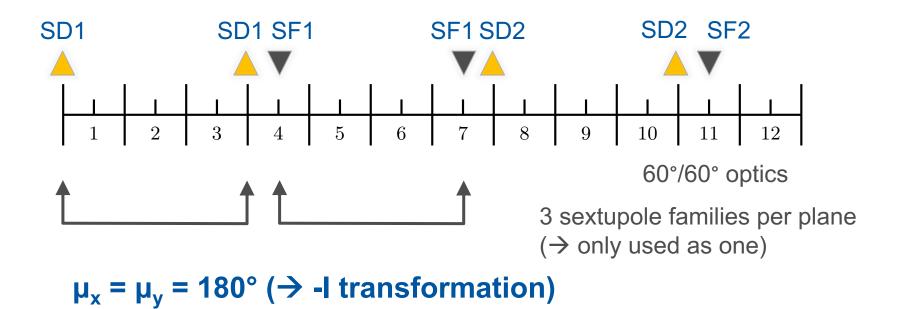
Bastian Haerer bastian.harer@cern.ch

Implication on the vacuum system

is being investigated by Marton Ady and Roberto Kersevan:

- Can wigglers be installed in the RF sections?
- What kind of absorbers are needed?

Are there special requirements on the beam pipe coming from eddy currents?


Marton Ady

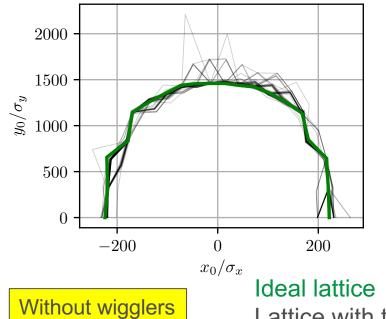
Work in progress...

Bastian Haerer bastian.harer@cern.ch

Non-interleaved sextupole scheme

Bastian Haerer bastian.harer@cern.ch

Dynamic aperture studies


Tracking with PTC by Tobias So far: version 2 with 50 m long cells in RF section & dummy RF system

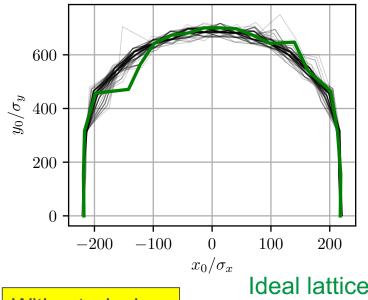
The studies include radiation damping and quantum excitation and were performed for 20 GeV beam energy

Bastian Haerer bastian.harer@cern.ch

DA of 60°/60° optics with 100 µm misalignents

- with $\boldsymbol{\varepsilon}_{x} = 45 \text{ pm rad}$
 - and $\beta_x = \beta_y = 100$ m
 - \rightarrow x_{max} = 16.0 mm
 - \rightarrow y_{max} = 9.7 mm

On-axis on-energy injection foreseen.


Ideal lattice for 1 % coupling

Lattice with transverse quadrupole misalignments (100 seeds)

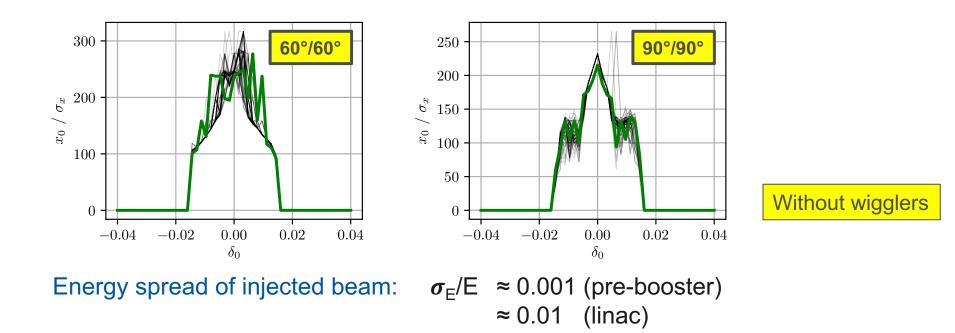
Bastian Haerer bastian.harer@cern.ch

DA of 90°/90° optics with 100 µm misalignments

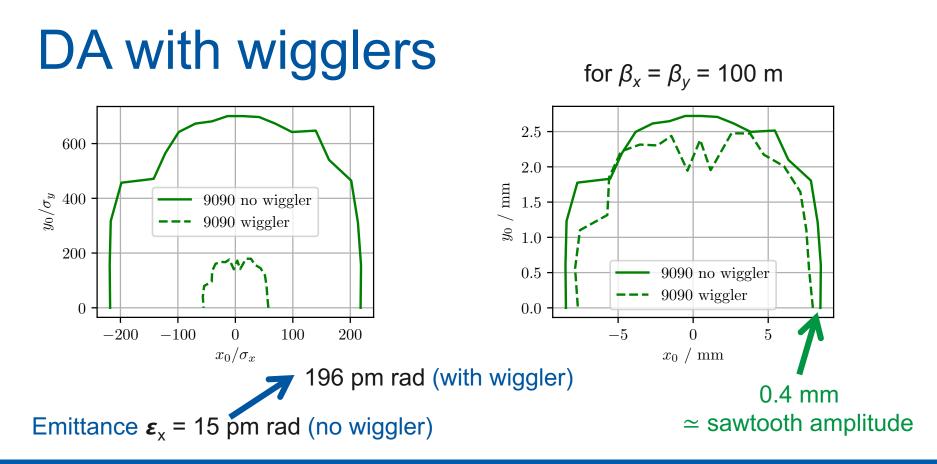
- with $\boldsymbol{\varepsilon}_{x}$ = 15 pm rad
 - and $\beta_x = \beta_y = 100 \text{ m}$
 - \rightarrow x_{max} = 8.7 mm
 - \rightarrow y_{max} = 2.6 mm

On-axis on-energy injection foreseen.

Without wigglers


Ideal lattice for 1 % coupling

Lattice with transverse quadrupole misalignments (100 seeds)


Bastian Haerer bastian.harer@cern.ch

Momentum aperture

Bastian Haerer bastian.harer@cern.ch

Bastian Haerer bastian.harer@cern.ch

DA studies outlook

Repeat tracking for V3 with

- 150 µm misalignment (Mark Jones said this would make a difference for the alignment)
- With wigglers next to RF section
- With realistic RF section
- → Unfortunately we are having troubles with the closed orbit search in PTC at the moment (discussion with Piotr)

Work in progress...

Further work ongoing

- Investigation of TMCI due to resistive wall
 → waiting for feedback from Eleonora
- Effect of gradient errors
 → Tessa's investigation using Sandra's scripts
- Synchrotron radiation created by the wigglers
 → Marton & Roberto

Bastian Haerer bastian.harer@cern.ch

Summary

Lattice design finished

- \rightarrow follows FCC-hh geometry, 100 m cell length in ESS sections
- \rightarrow optics and RF installations for every operation mode
- → wiggler magnets decrease damping time and intra-beam scattering at injection energy
- \rightarrow Non-interleaved sextupole scheme provides largest DA
- \rightarrow Misalignment do not decrease DA
- \rightarrow Final DA studies including wigglers and misalignments are ongoing

Thank you for your attention!

Acknowledgements: Thanks to T. Tydecks for the tracking calculations!

Bastian Haerer bastian.harer@cern.ch