

Probing the Quark Gluon Plasma with anisotropic flow measurements in ALICE

A. Dobrin (CERN & ISS) for the ALICE Collaboration

ALICE papers Phys. Lett. B 784 (2018) 82 JHEP 07 (2018) 103 JHEP 09 (2018) 006 arXiv:1809.09371

Introduction

Lattice QCD

- Present understanding of QCD:
 - Heating + compression → Quark Gluon Plasma (QGP): deconfined system of quarks and gluons
 - Lattice QCD: transition expected to occur at critical energy density $\epsilon_c \sim 0.5~GeV/fm^3$ and temperature $T_c \sim 156~MeV$

– Free quark gluon gas limit not reached \rightarrow residual interactions

Why study QGP?

QGP might have existed in the expanding Universe in the first μs after the Big Bang

Why study QGP?

QGP might have existed in the expanding Universe in the first μs after the Big Bang

Neutron stars: a more likely place for QGP to exist \rightarrow mass controlled by the equation of state (EoS) of nuclear matter

Time evolution of a heavy-ion collision

P. Sorensen / C. Shen

13/11/18

Centrality: controlling volume and shape

- Perpendicular to beam direction
- Connects centers of colliding nuclei
- Not measured directly \rightarrow estimated by centrality

Centrality: controlling volume and shape

Impact parameter b

- Perpendicular to beam direction
- Connects centers of colliding nuclei
- Not measured directly \rightarrow estimated by centrality
- Centrality determined from particle multiplicities
 - Most central: 0-5% centrality
 - Peripheral: 70-80% centrality

13/11/18

Anisotropic flow

Eccentricity: $\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$ 1) Superposition of independent pp Animation: Mike Lisa b

1) Superposition of independent pp

Momenta pointed at random relative to reaction plane

1) Superposition of independent pp

Momenta pointed at random relative to reaction plane

2) Evolution as a bulk system

Pressure gradients (larger in-plane) push bulk out \rightarrow "flow"

More, faster particles seen in-plane

A. Dobrin - CERN seminar

Anisotropic flow

- Most central collision: fluctuations of participating nucleons
 - Higher (odd) harmonics since $\Psi_{\text{RP}} \rightarrow \Psi_{n}$ (n-th order symmetry plane)
- Anisotropic flow: the transfer of initial spatial anisotropy into the final anisotropy in momentum space via collective interactions

Anisotropic flow

- Most central collision: fluctuations of participating nucleons
 - Higher (odd) harmonics since $\Psi_{\text{RP}} \rightarrow \Psi_{\text{n}}$ (n-th order symmetry plane)
- Anisotropic flow: the transfer of initial spatial anisotropy into the final anisotropy in momentum space via collective interactions
 - Sensitive to the system evolution
 - Constrain initial conditions, equation-of-state (EOS), transport properties

M. Luzum, J. Phys. G: Nucl. Part. Phys. 38 (2011) 124026

$$E \frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T} dp_{T} dy} (1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n(\varphi - \Psi_{n})))$$
$$v_{n} = \langle \cos(n(\varphi - \Psi_{n})) \rangle$$

- Particle azimuthal distribution measured with respect to the symmetry plane is not isotropic → Fourier series S. Voloshin and Y. Zhang, Z. Phys. C 70, (1996) 665
- v_n quantify the event anisotropy
 - v_1 directed flow, v_2 elliptic flow, v_3 triangular flow, ...

13/11/18

M. Luzum and P. Romatschke, PRC 78 (2008) 034915 Erratum: PRC 79 (2009) 039903

Shear viscosity will make the velocities u₁,
 u₂, u₃ equal and destroy the elliptic flow

easily due to small differences between velocities \rightarrow sensitive probes to η/s

0.02

0

0

0.5

1.5

p_t [GeV/c]

2.5

3

2

Flow fluctuations

2- and 4-particle azimuthal correlations for an event

 $\langle 2 \rangle \equiv \langle \cos(n(\varphi_i - \varphi_j)) \rangle, i \neq j$ $\langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle, i \neq j \neq k \neq l$

- Averaging over all events, the 2nd and 4th order cumulants $c_n \{2\} = \langle \langle 2 \rangle \rangle = v_n^2$ $c_n \{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^2 = -v_n^4$
- Flow fluctuations: affect methods differently

$$v_n\{2\} \approx \langle v_n \rangle + \sigma_{v_n}^2 / (2v_n)$$
$$v_n\{4\} \approx \langle v_n \rangle - \sigma_{v_n}^2 / (2v_n)$$

Flow fluctuations

2- and 4-particle azimuthal correlations for an event

 $\langle 2 \rangle \equiv \langle \cos(n(\varphi_i - \varphi_j)) \rangle, i \neq j$ $\langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle, i \neq j \neq k \neq l$

- Averaging over all events, the 2nd and 4th order cumulants $c_n \{2\} = \langle \langle 2 \rangle \rangle = v_n^2$ $c_n \{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^2 = -v_n^4$
- Flow fluctuations: affect methods differently

$$\mathbf{v}_n\{2\} \approx \langle \mathbf{v}_n \rangle + \sigma_{\mathbf{v}_n}^2 / (2 \mathbf{v}_n)$$

$$\mathbf{v}_n\{4\} \approx \langle \mathbf{v}_n \rangle - \sigma_{\mathbf{v}_n}^2 / (2 \mathbf{v}_n)$$

• For Bessel-Gaussian fluctuations

S. Voloshin et al., PLB 659 (2008) 537

$$v_n \{2\}^2 = v_{n,0}^2 + 2\sigma_{vn}^2$$

 $v_n \{m\} = v_{n,0}, m \ge 4$

Flow fluctuations

2- and 4-particle azimuthal correlations for an event

 $\langle 2 \rangle \equiv \langle \cos(n(\varphi_i - \varphi_j)) \rangle, i \neq j$ $\langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle, i \neq j \neq k \neq l$

• Averaging over all events, the 2nd and 4th order cumulants

$$c_{n}\{2\} = \langle \langle 2 \rangle \rangle = v_{n}^{2}$$
$$c_{n}\{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^{2} = -v_{n}^{4}$$

• Flow fluctuations: affect methods differently

 $\mathbf{v}_n\{2\} \approx \langle \mathbf{v}_n \rangle + \sigma_{\mathbf{v}_n}^2 / (2\mathbf{v}_n)$ $\mathbf{v}_n\{4\} \approx \langle \mathbf{v}_n \rangle - \sigma_{\mathbf{v}_n}^2 / (2\mathbf{v}_n)$

For Bessel-Gaussian fluctuations

S. Voloshin et al., PLB 659 (2008) 537

$$v_n \{2\}^2 = v_{n,0}^2 + 2\sigma_{vn}^2$$

 $v_n \{m\} = v_{n,0}, m \ge 4$

Other parametrizations available

L. Yan and J.Y. Ollitrault, PRL 112 (2014) 082301 L. Yan et al., PRC 90 (2014) 024903

v_n measurements

First v₂ @ RHIC

- First v₂ measurement @ RHIC
 - Good agreement with hydrodynamic predictions with η/s=0

First v₂ @ RHIC

- First v₂ measurement @ RHIC
 - Good agreement with hydrodynamic predictions with η/s=0
 - \rightarrow "Perfect" liquid (almost zero friction)

First v_2 @ LHC

- First *v*₂ measurement @ LHC
 - Elliptic flow increases by ~30% when compared to RHIC energies
 - The system created at the LHC behaves like a "perfect" liquid

- Integrated v_n measured up to v_6 using cumulants
 - Increase of $< p_T >$ responsible for differences between $\sqrt{s_{NN}} = 2.76$ TeV and 5.02 TeV

Integrated v_n

- Integrated v_n measured up to v_6 using cumulants
 - Increase of $< p_T >$ responsible for differences between $\sqrt{s_{NN}} = 2.76$ TeV and 5.02 TeV
 - Ratios of v_n at different energies constrain initial conditions and $\eta/s(T)$

13/11/18

Integrated v_2 : cumulants

- Integrated v_2 measured with 2-, 4-, 6-, 8-particle cumulants
 - Different sensitivities to flow fluctuations
 - Allow to extract flow probability distribution function (p.d.f.)
 - Increase of $< p_T >$ responsible for differences between $\sqrt{s_{NN}} = 2.76$ TeV and 5.02 TeV

Integrated v_2 : ratios of cumulants

ALICE, JHEP 07 (2018) 103

- Ratios $v_2{6}/v_2{4}$ and $v_2{8}/v_2{4}$ below unity \rightarrow non-Gaussian fluctuations
 - Small centrality dependence consistent between $\sqrt{s_{NN}}$ = 2.76 TeV and 5.02 TeV

Integrated v_2 : ratios of cumulants

• Ratios $v_2{6}/v_2{4}$ and $v_2{8}/v_2{4}$ below unity \rightarrow non-Gaussian fluctuations

- Small centrality dependence consistent between $\sqrt{s_{NN}}$ = 2.76 TeV and 5.02 TeV
- Good agreement with ATLAS results and hydrodynamic calculations

13/11/18

- Use v_2 {m} to determine v_2 p.d.f $P(v_2)$
- $P(v_2)$ scaled by $\langle v_2 \rangle$ agrees with ATLAS results at $\sqrt{s_{NN}} = 2.76$ TeV
 - Flow fluctuations at low p_T depend weakly on p_T and collision energy
- Good agreement with hydrodynamic calculations with TRENTo and IP-Glasma initial conditions

Constrain initial state models

U. Heinz and R. Snellings, Ann.Rev.Nucl.Part.Sci. 63 (2013) 123

13/11/18

A. Dobrin - CERN seminar

v : Pb-Pb vs Xe-Xe

 v₂: differences within 10% except in 0-5% centrality interval where reached 35% (Xe deformation)

v : Pb-Pb vs Xe-Xe

- v₂: differences within 10% except in 0-5% centrality interval where reached 35% (Xe deformation)
- v_3 : larger in Xe-Xe due to larger initial state fluctuations

- v₂: differences within 10% except in 0-5% centrality interval where reached 35% (Xe deformation)
- v_3 : larger in Xe-Xe due to larger initial state fluctuations
- Results described quantitatively by hydrodynamic models

• Hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) describe data at low p_{T}

- MUSIC with IP-Glasma IC, ζ/s(T), η/s=0.095 for p_T <1 GeV/c S. McDonald et al., PRC 95 (2017) 064913
- iEBE-VISHNU with AMPT IC, ζ /s=0, η /s=0.08 for p_{T} <2 GeV/c
- iEBE-VISHNU with TRENTo IC, $\zeta/s(T)$, $\eta/s(T)$ for $p_T < 1-2$ GeV/*c*

13/11/18

A. Dobrin - CERN seminar

W. Zhao et al., EPJC 77 (2017) 645

• Hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) describe data at low p_{T}

- MUSIC with IP-Glasma IC, ζ/s(T), η/s=0.095 for p_T <1 GeV/c S. McDonald et al., PRC 95 (2017) 064913
- iEBE-VISHNU with AMPT IC, ζ /s=0, η /s=0.08 for p_{T} <2 GeV/c
- iEBE-VISHNU with TRENTo IC, $\zeta/s(T)$, $\eta/s(T)$ for $p_T < 1-2$ GeV/c

13/11/18

A. Dobrin - CERN seminar

W. Zhao et al., EPJC 77 (2017) 645

$p v_n vs$ hydrodynamic calculations

- Hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) describe data at low p_{T}
 - MUSIC with IP-Glasma IC, $\zeta/s(T)$, $\eta/s=0.095$ for $p_T < 1$ GeV/c S. McDonald et al., PRC 95 (2017) 064913
 - iEBE-VISHNU with AMPT IC, ζ /s=0, η /s=0.08 for p_{T} <3 GeV/c
 - iEBE-VISHNU with TRENTo IC, $\zeta/s(T)$, $\eta/s(T)$ for $p_T < 2-3$ GeV/c

13/11/18

A. Dobrin - CERN seminar

W. Zhao et al., EPJC 77 (2017) 645

- For $p_T < 2 \text{ GeV}/c$: v_2 of lighter particles is larger than heavier ones \rightarrow mass ordering
 - Interplay between elliptic and radial flow
 - Radial flow (isotropic expansion) pushes particles to higher p_{T}

- For $p_T < 2 \text{ GeV}/c$: v_2 of lighter particles is larger than heavier ones \rightarrow mass ordering
 - Interplay between elliptic and radial flow
 - Radial flow (isotropic expansion) pushes particles to higher $p_{\rm T}$
- For $3 < p_T < 10$ GeV/*c*: particles tend to group into mesons and baryons
- ϕ -meson (m ~ 1 GeV/c²) v_2 tests both mass ordering and particle type scaling

- For $p_T < 2 \text{ GeV}/c$: v_2 of lighter particles is larger than heavier ones \rightarrow mass ordering
 - Interplay between elliptic and radial flow
 - Radial flow (isotropic expansion) pushes particles to higher $p_{\rm T}$
- For $3 < p_T < 10$ GeV/*c*: particles tend to group into mesons and baryons
- ϕ -meson (m ~ 1 GeV/c²) v_2 tests both mass ordering and particle type scaling
- For p_T > 10 GeV/c: no particle type dependence within uncertainties
 - Parton energy loss as hadronization mechanism

PID $v_n(p_T)$

• Analogous to the trend of v_2

What about heavy quarks?

- Heavy quarks produced early \rightarrow calculable with perturbative QCD
- Large mass \rightarrow short formation time \rightarrow probe the evolution of the QGP
 - $1/2m_c$ (~0.07 fm/c) < QGP formation time (~0.1-1 fm/c)
- How do they interact with the perfect liquid?
 - \rightarrow v₂ provides a measure of the heavy-quark diffusion

- D-meson v_2 larger than 0 in $2 < p_T < 10 \text{ GeV}/c$
 - Indication of strong coupling of c-quark to the medium
- First measurement of $D_s v_2$ at LHC

- D-meson v_2 larger than 0 in $2 < p_T < 10 \text{ GeV}/c$
 - Indication of strong coupling of c-quark to the medium
- First measurement of $D_s v_2$ at LHC
- D-meson v_2 similar to that of π^{\pm}
- Is light-quark v₂ responsible for D-meson v₂ (via interactions)?
 A. Dobrin CERN seminar

- Significant v_2 is observed in different p_T ranges
- Comparison to transport model calculations
 - Indication of strong coupling of c-quark to the medium

J/Ψ

- Comparison between different flavors
 - Clear ordering for $p_T < 6 \text{ GeV}/c$: $v_n(J/\Psi) < v_n(D^0) < v_n(h^{\pm})$
 - Convergence for $p_T > 6 \text{ GeV}/c$: $v_n(J/\Psi) \approx v_n(D^0) \approx v_n(h^{\pm})$

ALT-PREL-307875

Select events with similar centralities (volume) and different shapes based on the event-by-event flow/eccentricity fluctuations

Flow vector \rightarrow q-distributions $Q_{n,x} = \sum_{i} \cos(n \varphi_{i})$ $Q_{n,y} = \sum_{i} \sin(n \varphi_{i})$ \rightarrow $Q_{n} = \{Q_{n,x}, iQ_{n,y}\}$ $q_{n} = |Q_{n}|/\sqrt{M}$

• Correlation between bulk (light charged particles used for ESE) and D-meson v_2

• Charm sensitive to bulk V_2 and initial state fluctuations

• Correlation between bulk (light charged particles used for ESE) and D-meson v_2

- Charm sensitive to bulk V_2 and initial-state fluctuations
- Further constraints on the theory 13/11/18 A.

$J/\Psi v_2$ with ESE

- J/ Ψv_2 is larger or smaller than the average with ESE
- Ratios (ESE/unbiased) of J/ Ψv_2 consistent with those of single muons within uncertainties
 - $J/\psi v_2$ compatible with the expected variations of the eccentricity

13/11/18

• The properties of the QGP and parts of the QCD phase diagram are understood much better

C. Gale et al, Int. J. Mod. Phys. A 28 (2013) 1340011

Summary

- The properties of the QGP and parts of the QCD phase diagram are understood much better
 - Start constraining using v_n for inclusive and identified particle and their energy dependence
 - Temperature dependence of shear viscosity

H. Niemi et al., PRC 93 (2016) 014912

Summary

- The properties of the QGP and parts of the QCD phase diagram are understood much better
 - Start constraining using v_n for inclusive and identified particle and their energy dependence
 - Temperature dependence of shear viscosity
 - Initial conditions

Outlook

- Further constrain temperature dependence of shear viscosity and equation-of-state using Bayesian statistics
- Collectivity in small systems

A. Dobrin - CERN seminar