

Probing the Quark Gluon Plasma with anisotropic flow measurements in ALICE

A. Dobrin (CERN & ISS) for the ALICE Collaboration

ALICE papers Phys. Lett. B 784 (2018) 82 JHEP 07 (2018) 103 JHEP 09 (2018) 006 arXiv:1809.09371

Introduction

- Present understanding of QCD:
	- Heating + compression \rightarrow Quark Gluon Plasma (QGP): deconfined system of quarks and gluons
	- Lattice QCD: transition expected to occur at critical energy density ϵ_c ~0.5 GeV/fm³ and temperature $T_c \sim 156$ MeV

– Free quark gluon gas limit not reached \rightarrow residual interactions

13/11/18 A. Dobrin - CERN seminar 3

Why study QGP?

QGP might have existed in the expanding Universe in the first us after the Big Bang

Why study QGP?

QGP might have existed in the expanding Universe in the first us after the Big Bang

Neutron stars: a more likely place for QGP to exist \rightarrow mass controlled by the equation of state (EoS) of nuclear matter

Time evolution of a heavy-ion collision

P. Sorensen / C. Shen

13/11/18 A. Dobrin - CERN seminar 6

Centrality: controlling volume and shape CERN **ALICE** Spectators

Participants before collision after collision **Impact parameter b**

- Perpendicular to beam direction
- Connects centers of colliding nuclei
- Not measured directly \rightarrow estimated by centrality

Impact parameter b

- Perpendicular to beam direction
- Connects centers of colliding nuclei
- Not measured directly \rightarrow estimated by centrality
- Centrality determined from particle multiplicities
	- Most central: 0-5% centrality
	- Peripheral: 70-80% centrality

13/11/18 A. Dobrin - CERN seminar 8

Anisotropic flow

CERN

 $\langle y^2 - x^2 \rangle$

 $\langle y^2 + x^2 \rangle$

 ε =

1) Superposition of independent pp Animation: Mike Lisa Eccentricity:

b $\overline{}$

1) Superposition of independent pp

1) Superposition of independent pp

Momenta pointed at random relative to reaction plane

1) Superposition of independent pp

Momenta pointed at random relative to reaction plane

2) Evolution as a bulk system

Pressure gradients (larger in-plane) push bulk out \rightarrow "flow"

More, faster particles seen in-plane

13/11/18 A. Dobrin - CERN seminar 22

- Most central collision: fluctuations of participating nucleons
	- Higher (odd) harmonics since $\Psi_{\text{\tiny RP}} \rightarrow \Psi_{\text{\tiny n}}$ (n-th order symmetry plane)
- Anisotropic flow: the transfer of initial spatial anisotropy into the final anisotropy in momentum space via collective interactions

Anisotropic flow

- Most central collision: fluctuations of participating nucleons
	- Higher (odd) harmonics since $\Psi_{\text{\tiny RP}} \rightarrow \Psi_{\text{\tiny n}}$ (n-th order symmetry plane)
- Anisotropic flow: the transfer of initial spatial anisotropy into the final anisotropy in momentum space via collective interactions
	- Sensitive to the system evolution
		- Constrain initial conditions, equation-of-state (EOS), transport properties

M. Luzum, J. Phys. G: Nucl. Part. Phys. 38 (2011) 124026

$$
E \frac{d^3 N}{d^3 p} = \frac{1}{2\pi} \frac{d^2 N}{p_T dp_T dy} \left(1 + \sum_{n=1}^{\infty} 2 v_n \cos \left(n \left(\phi - \Psi_n \right) \right) \right)
$$

$$
v_n = \left\langle \cos \left(n \left(\phi - \Psi_n \right) \right) \right\rangle
$$

- Particle azimuthal distribution measured with respect to the symmetry plane is not isotropic \rightarrow Fourier series S. Voloshin and Y. Zhang, Z. Phys. C 70, (1996) 665
- v_n quantify the event anisotropy
	- v_1 directed flow, v_2 elliptic flow, v_3 triangular flow, ...

M. Luzum and P. Romatschke, PRC 78 (2008) 034915 Erratum: PRC 79 (2009) 039903

• Shear viscosity will make the velocities u_1 , u_2 , u_3 equal and destroy the elliptic flow

• Higher harmonics get destroyed more easily due to small differences between velocities \rightarrow sensitive probes to η /s

0.04

 0.02

 $\overline{0}$

 $\overline{0}$

 0.5

 η /s=0.16

 $\overline{2}$

 2.5

3

 1.5

Flow fluctuations

• 2- and 4-particle azimuthal correlations for an event

 $\langle 2 \rangle$ \equiv $\langle \cos(n(\phi_i-\phi_j)) \rangle$ *, i* \neq *j* $\langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle$, $i \neq j \neq k \neq l$

- Averaging over all events, the 2^{nd} and 4^{th} order cumulants c_n {2}= $\langle \langle 2 \rangle \rangle$ = v_n^2 c_n $\{4\}=\langle\langle 4 \rangle\rangle - 2\langle\langle 2 \rangle\rangle^2 = -v_n^4$
- Flow fluctuations: affect methods differently

$$
v_n\{2\} \approx \langle v_n \rangle + \sigma_{v_n}^2/(2v_n)
$$

$$
v_n\{4\} \approx \langle v_n \rangle - \sigma_{v_n}^2/(2v_n)
$$

Flow fluctuations

• 2- and 4-particle azimuthal correlations for an event

 $\langle 2 \rangle$ \equiv $\langle \cos(n(\phi_i-\phi_j)) \rangle$ *, i* \neq *j* $\langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle$, $i \neq j \neq k \neq l$

- Averaging over all events, the 2^{nd} and 4^{th} order cumulants c_n {2}= $\langle \langle 2 \rangle \rangle$ = v_n^2 c_n $\{4\}=\langle\langle 4 \rangle\rangle - 2\langle\langle 2 \rangle\rangle^2 = -v_n^4$
- Flow fluctuations: affect methods differently

$$
v_n\{2\} \approx \langle v_n \rangle + \sigma_{v_n}^2 / (2 v_n)
$$

$$
v_n\{4\} \approx \langle v_n \rangle - \sigma_{v_n}^2 / (2 v_n)
$$

For Bessel-Gaussian fluctuations

S. Voloshin et al., PLB 659 (2008) 537

$$
v_n\{2\}^2 = v_{n,0}^2 + 2 \sigma_{vn}^2
$$

$$
v_n\{m\} = v_{n,0}, m \ge 4
$$

Flow fluctuations

• 2- and 4-particle azimuthal correlations for an event

 $\langle 2 \rangle$ \equiv $\langle \cos(n(\phi_i-\phi_j)) \rangle$ *, i* \neq *j* $\langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle$, $i \neq j \neq k \neq l$

Averaging over all events, the 2^{nd} and 4^{th} order cumulants

$$
c_n\{2\} = \langle \langle 2 \rangle \rangle = v_n^2
$$

$$
c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^2 = -v_n^4
$$

Flow fluctuations: affect methods differently

 v_n {2}≈ $\langle v_n \rangle + \sigma_{v_n}^2$ /(2 v_n) $v_n(4) \approx \langle v_n \rangle - \sigma_{v_n}^2/(2v_n)$

For Bessel-Gaussian fluctuations

S. Voloshin et al., PLB 659 (2008) 537

$$
v_n\{2\}^2 = v_{n,0}^2 + 2 \sigma_{vn}^2
$$

$$
v_n\{m\} = v_{n,0}, m \ge 4
$$

Other parametrizations available

L. Yan and J.Y. Ollitrault, PRL 112 (2014) 082301 L. Yan et al., PRC 90 (2014) 024903

v n measurements

First *v*₂ @ RHIC

- First *v*₂ measurement @ RHIC
	- Good agreement with hydrodynamic predictions with η/s=0

First *v*₂ @ RHIC

- First *v*₂ measurement @ RHIC
	- Good agreement with hydrodynamic predictions with η/s=0
		- \rightarrow "Perfect" liquid (almost zero friction)

13/11/18 A. Dobrin - CERN seminar 33

ubSci Science Café and

onversation: Big Bang Physics

RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as

was expected, the matter created in RHIC's heavy ion collisions appears to be more like a liquid.

First $v_2 \textcircled{a}$ LHC

- First *v*₂ measurement @ LHC
	- Elliptic flow increases by \sim 30% when compared to RHIC energies
		- The system created at the LHC behaves like a "perfect" liquid

- Integrated $v_{\rm n}$ measured up to $v_{\rm 6}$ using cumulants
	- Increase of $\langle p_{\text{T}} \rangle$ responsible for differences between $\sqrt{s_{\text{NN}}}$ = 2.76 TeV and 5.02 TeV

13/11/18 A. Dobrin - CERN seminar 35

Integrated *v* n

- Integrated $v_{\rm n}$ measured up to $v_{\rm 6}$ using cumulants
	- Increase of $\langle p_{\text{T}} \rangle$ responsible for differences between $\sqrt{s_{NN}}$ = 2.76 TeV and 5.02 TeV
	- 13/11/18 A. Dobrin CERN seminar 36 • Ratios of *v*_n at different energies constrain initial conditions and η/s(T)

Integrated *v*₂: cumulants

- Integrated v_2 measured with 2-, 4-, 6-, 8-particle cumulants
	- Different sensitivities to flow fluctuations
	- Allow to extract flow probability distribution function (p.d.f.)
	- Increase of $\langle p_{\text{T}} \rangle$ responsible for differences between $\sqrt{s_{NN}}$ = 2.76 TeV and 5.02 TeV

Integrated *v*₂: ratios of cumulants

ALICE, JHEP 07 (2018) 103

- Ratios v $_2$ {6}/v $_2$ {4} and v $_2$ {8}/v $_2$ {4} below unity \rightarrow non-Gaussian fluctuations
	- Small centrality dependence consistent between $\sqrt{s_{NN}}$ = 2.76 TeV and 5.02 TeV

Integrated *v*₂: ratios of cumulants

- Ratios v $_2$ {6}/v $_2$ {4} and v $_2$ {8}/v $_2$ {4} below unity \rightarrow non-Gaussian fluctuations
	- Small centrality dependence consistent between $\sqrt{s_{NN}}$ = 2.76 TeV and 5.02 TeV
	- Good agreement with ATLAS results and hydrodynamic calculations

13/11/18 A. Dobrin - CERN seminar 39

S. McDonald et al., PRC 95 (2017) 064913 W. Zhao et al., EPJC 77 (2017) 645

- Use v_2 {m} to determine v_2 p.d.f $P(v_2)$
- $P(v_2)$ scaled by $\langle v_2 \rangle$ agrees with ATLAS results at $\sqrt{s_{NN}}$ = 2.76 TeV
	- Flow fluctuations at low $p_{\scriptscriptstyle \top}$ depend weakly on $\boldsymbol{\rho}_\text{\tiny T}$ and collision energy
- Good agreement with hydrodynamic calculations with TRENTo and IP-Glasma initial conditions

• Constrain initial state models

U. Heinz and R. Snellings, Ann.Rev.Nucl.Part.Sci. 63 (2013) 123

13/11/18 A. Dobrin - CERN seminar 40

v n : Pb-Pb vs Xe-Xe

• v_2 : differences within 10% except in 0-5% centrality interval where reached 35% (Xe deformation)

v n : Pb-Pb vs Xe-Xe

- v_2 : differences within 10% except in 0-5% centrality interval where reached 35% (Xe deformation)
- v_3 : larger in Xe-Xe due to larger initial state fluctuations

- v_2 : differences within 10% except in 0-5% centrality interval where reached 35% (Xe deformation)
- v_3 : larger in Xe-Xe due to larger initial state fluctuations
- Results described quantitatively by hydrodynamic models

• Topological reconstruction for K^o_s, Λ, J/Ψ and D-mesons

 $\frac{4}{m_{\mu^+\mu^-}} \times \frac{4.5}{(GeV/c^2)}$

 2.5

ALI-PERF-148536

 $\overline{3}$

 3.5

• Hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) describe data at low p_T

- MUSIC with IP-Glasma IC, ζ /s(T), η /s=0.095 for p_T <1 GeV/*c* S. McDonald et al., PRC 95 (2017) 064913
- iEBE-VISHNU with AMPT IC, ζ /s=0, η /s=0.08 for $p_T < 2$ GeV/*c*
- iEBE-VISHNU with TRENTo IC, ζ /s(T), η /s(T) for p_T <1-2 GeV/*c*

13/11/18 A. Dobrin - CERN seminar 45

W. Zhao et al., EPJC 77 (2017) 645

• Hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) describe data at low p_T

- MUSIC with IP-Glasma IC, ζ /s(T), η /s=0.095 for p_T <1 GeV/*c* S. McDonald et al., PRC 95 (2017) 064913
- iEBE-VISHNU with AMPT IC, ζ /s=0, η /s=0.08 for $p_T < 2$ GeV/*c*
- iEBE-VISHNU with TRENTo IC, ζ /s(T), η /s(T) for p_T <1-2 GeV/*c*

13/11/18 A. Dobrin - CERN seminar 46

W. Zhao et al., EPJC 77 (2017) 645

p *v* n vs hydrodynamic calculations

- Hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) describe data at low p_T
	- MUSIC with IP-Glasma IC, ζ /s(T), η /s=0.095 for p_T <1 GeV/*c* S. McDonald et al., PRC 95 (2017) 064913
	- iEBE-VISHNU with AMPT IC, ζ /s=0, η /s=0.08 for p_{τ} <3 GeV/*c*
	- iEBE-VISHNU with TRENTo IC, ζ /s(T), η /s(T) for p_T <2-3 GeV/*c*

13/11/18 A. Dobrin - CERN seminar 47

W. Zhao et al., EPJC 77 (2017) 645

- For $p_{\scriptscriptstyle T}$ <2 GeV/*c*: $v_{\scriptscriptstyle 2}$ of lighter particles is larger than heavier ones \to mass ordering
	- Interplay between elliptic and radial flow
		- Radial flow (isotropic expansion) pushes particles to higher p_T

- For $p_{\scriptscriptstyle T}$ <2 GeV/*c*: $v_{\scriptscriptstyle 2}$ of lighter particles is larger than heavier ones \to mass ordering
	- Interplay between elliptic and radial flow
		- Radial flow (isotropic expansion) pushes particles to higher p_T
- For $3 < p_{\tau} < 10$ GeV/*c*: particles tend to group into mesons and baryons
- φ-meson (m ~ 1 GeV/*c*²) *v*₂ tests both mass ordering and particle type scaling

- For $p_{\scriptscriptstyle T}$ <2 GeV/ c : $v_{\scriptscriptstyle 2}$ of lighter particles is larger than heavier ones \to mass ordering
	- Interplay between elliptic and radial flow
		- Radial flow (isotropic expansion) pushes particles to higher p_T
- For $3 < p_T < 10$ GeV/*c*: particles tend to group into mesons and baryons
- φ-meson (m ~ 1 GeV/*c*²) *v*₂ tests both mass ordering and particle type scaling
- For p_T > 10 GeV/c: no particle type dependence within uncertainties
	- Parton energy loss as hadronization mechanism

13/11/18 A. Dobrin - CERN seminar 50

PID *v* $\Gamma_{\text{n}}(\boldsymbol{\mathcal{p}}_{\top})$

• Analogous to the trend of v_2

What about heavy quarks?

- Heavy quarks produced early \rightarrow calculable with perturbative QCD
- Large mass \rightarrow short formation time \rightarrow probe the evolution of the QGP
	- $1/2m_c$ (~0.07 fm/*c*) < QGP formation time (~0.1-1 fm/*c*)
- How do they interact with the perfect liquid?
	- \rightarrow v_{2} provides a measure of the heavy-quark diffusion

13/11/18 A. Dobrin - CERN seminar 53

- D-meson v_2 larger than 0 in 2< p_{T} <10 GeV/*c*
	- Indication of strong coupling of c-quark to the medium
- First measurement of D_s v_2 at LHC

- D-meson v_2 larger than 0 in 2< p_{T} <10 GeV/*c*
	- Indication of strong coupling of c-quark to the medium
- First measurement of D_s v_2 at LHC
- D-meson v_2 similar to that of $π[±]$
- 13/11/18 A. Dobrin CERN seminar 55 • Is light-quark v_2 responsible for D-meson v_2 (via interactions)?

- Significant v_2 is observed in different $p_{\text{\tiny T}}$ ranges
- Comparison to transport model calculations
	- Indication of strong coupling of c-quark to the medium

J/Ψ *v*

- Comparison between different flavors
	- Clear ordering for p_T <6 GeV/*c*: $v_n(J/\Psi) < v_n(D^0) < v_n(h^{\pm})$
	- Convergence for p_T >6 GeV/*c*: $v_n(J/\Psi) \approx v_n(D^0) \approx v_n(h^{\pm})$

Select events with similar centralities (volume) and different shapes based on the event-by-event flow/eccentricity fluctuations

> Flow vector \rightarrow q-distributions $Q_n = \{Q_{n,x}, iQ_{n,y}\}$ $Q_{n,y} = \sum_{i} \sin(n \varphi_{i})$ *q_n*= $|Q_{n}|/\sqrt{M}$ $Q_{n,x} = \sum_i \cos(n \varphi_i)$

- Correlation between bulk (light charged particles used for ESE) and D-meson v_2
	- \bullet Charm sensitive to bulk v_2 and initial state fluctuations

• Correlation between bulk (light charged particles used for ESE) and D-meson v_2

- \bullet Charm sensitive to bulk v_2 and initial-state fluctuations
- 13/11/18 A. Dobrin CERN seminar 61 • Further constraints on the theory

J/Ψ v_2 with ESE

- J/Ψ $v₂$ is larger or smaller than the average with ESE
- Ratios (ESE/unbiased) of J/Ψ *v*₂ consistent with those of single muons within uncertainties
	- \bullet J/ ψ v_2 compatible with the expected variations of the eccentricity

• The properties of the QGP and parts of the QCD phase diagram are understood much better

C. Gale et al, Int. J. Mod. Phys. A 28 (2013) 1340011

Summary

- The properties of the QGP and parts of the QCD phase diagram are understood much better
	- Start constraining using v_n for inclusive and identified particle and their energy dependence
		- Temperature dependence of shear viscosity

H. Niemi et al., PRC 93 (2016) 014912

Summary

- The properties of the QGP and parts of the QCD phase diagram are understood much better
	- Start constraining using v_n for inclusive and identified particle and their energy dependence
		- Temperature dependence of shear viscosity
		- Initial conditions

Outlook

- Further constrain temperature dependence of shear viscosity and equation-of-state using Bayesian statistics
- Collectivity in small systems

13/11/18 A. Dobrin - CERN seminar 66