

Amplitude analyses of multibody hadronic decays at LHCb

Rafael Silva Coutinho

Universität Zürich - SNF Ambizione On behalf of the LHCb Collaboration

CERN LHC Seminar December 11th, 2018

Julie Oppermann [Untitled (2013) - Acrylic on yupo paper]

Portrait of the underlying physics

"... the specks and flickers

of paint dance like energy

particles throughout the

painting."

Norm YIP [Ecstasy, No. 1 (2015) - Acrylic on canvas]

[Crystal Barrel LEAR]

In the SM quarks can change their flavour by emission of a W boson, with transition probability governed by the CKM matrix

$$\mathbf{P} \underbrace{\mathbf{V}_{\mathsf{P}}}_{\mathsf{V}_{\mathsf{T}}} \mathbf{P} \underbrace{V_{\mathsf{CKM}}}_{\mathsf{V}_{\mathsf{CKM}}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Described by 4 independent parameters, in particular a single complex phase

$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

So far a huge success for the Standard Model!

~20% contribution from New Physics still possible within current precision

[LHCb, PRL 110 (2013) 221601]

Hadronic 2-body $B \rightarrow K\pi$ decays show an interesting A^{CP} pattern:

ACP measurements

	BaBar	Belle
$B^0 \to K^0 \pi^0$	$+0.13 \pm 0.13 \pm 0.03$	$+0.14 \pm 0.13 \pm 0.06$
$B^+ \to K^0 \pi^+$	$-0.029 \pm 0.039 \pm 0.010$	$-0.011 \pm 0.021 \pm 0.006$
$B^0 \to K^+ \pi^-$	$-0.107\pm0.016^{+0.006}_{-0.004}$	$-0.069 \pm 0.014 \pm 0.007$
$B^+ \to K^+ \pi^0$	$+0.030\pm 0.039\pm 0.010$	$+0.043\pm 0.024\pm 0.002$

Spectator exchange of d \leftrightarrow u: naïvely $B^+ \rightarrow K^+ \pi^0$ should follow $B^+ \rightarrow K^+ \pi^-$

CP violation sensitivity in two-body decays

Premise: additional information can be obtained via multi-body decays (n >2)

Interference pattern for multi-channels

Multibody decays proceed through several intermediate states which interfere

 \rightarrow The phase-space has interference pattern analogous to the double-slit experiment

The coupling of initial and final states is given by the invariant amplitudes of the process

Wave-particle duality of light for the classroom A. Weis and T. L. Dimitrova

Technique named after Richard Dalitz (1925-2006) applied to study K_L decays

Spin/parity determination of the known τ/θ particle in its decay to three pion final state "On the analysis of tau-meson data and the nature of the tau-meson."

"I visualise geometry better than numbers" Richard Dalitz

Scatter-plot visualisation as

- Matrix element constant: Dalitz-plot uniformly populated
- Non-uniform distributions, *i.e.* dynamics
- Interference patterns between intermediate states can be studied/model

<figure>

"A work of art" - gift from B. Ritcher, W. Panofsky, S. Drell, D. Leith, D. Aston, W. Dunwoodie and B. Ratcliff

[R. H. Dalitz, Phil. Mag. 44 (1953) 1068]

In reality, interference plays a significant role in these distributions and in the physics sensitivity

Amplitude analysis can explore several information features of multi body decays

- Relative phases between states
- Sensitivity to CP violating effects
- Resolve ambiguities in weak phases
- Hadron spectroscopy

[BaBar, PRL 103 (2009) 211801]

Low-energy resonant states while dominate in D decays, in B decays are clustered around the edges

Amplitude analysis can explore several information features of multi body decays

- Relative phases between states
- Sensitivity to CP violating effects
- Resolve ambiguities in weak phases
- Hadron spectroscopy

Amplitude analysis most commonly performed in the "Isobar Model"

Total amplitude is approximated as coherent sum of quasi-two-body contributions:

$$CP \text{ violating } \begin{array}{c} \text{Strong dynamics} \\ CP \text{ conserving} \\ \mathcal{A}(m_{12}^2, m_{23}^2) = \sum_{j=1}^{N} c_j F_j(m_{12}^2, m_{23}^2) \end{array}$$

 c_l : complex coefficients describing the relative magnitude and phase of the different isobars F_l : dynamical amplitudes that contain the lineshape and spin-dependence of the hadronic part

$$F_{j}(L, m_{12}^{2}, m_{23}^{2}) = \begin{bmatrix} R_{j}(m_{12}^{2}) \\ Resonance mass term \\ (e.g. Breit-Wigner) \end{bmatrix} \times \begin{bmatrix} R_{j}(m_{12}^{2}) \\ X_{L}(|\vec{p}|r) \\ X_{L}(|\vec{q}|r) \\ X_{L}(|\vec{q}|r)$$

More sophisticated approaches can be pursued, e.g. partial wave analysis

R. Silva Coutinho (UZH)

[Int. J. Mod. Phys. A30, (2015) 1530022]

Particle ID/misID, [e.g. $\epsilon(K) \approx 95\%$]

[Int. J. Mod. Phys. A30, (2015) 1530022]

Charged particles trajectories are classified according to the hits in the several modules of the detector

[Int. J. Mod. Phys. A30, (2015) 1530022]

First Dalitz plot analysis of $B_{s}^{0} \rightarrow K^{0}K^{\pm}\pi^{\mp}$ decays

LHCb results : $\mathcal{L} = 3 \, \text{fb}^{-1} - 2011 + 2012 \, \text{dataset}$

Isobar approach - the "artisan" approach

[LHCb-PAPER-2018-045]

Leif Nilsson [Gate to the Studio - noon]

The $B_{s}^{0} \rightarrow K^{0}K^{\pm}\pi^{\mp}$ decay

Search for CP in charmless 3-body decays of neutral B mesons to final states containing a K⁰ meson

𝔅 CKM angle γ using B⁰_s→ K*K and flavour symmetries

 \circledast U-spin multiplet $B^{0}_{s} \rightarrow K^{*0}\overline{K}^{0}(\overline{K}^{*0}K^{0})$ to $B^{0} \rightarrow K^{*}K$

The $B_{s}^{0} \rightarrow K^{0}K^{\pm}\pi^{\mp}$ decay

Search for CP in charmless 3-body decays of neutral B mesons to final states containing a K⁰ meson

- 𝔅 CKM angle γ using B⁰_s→ K*K and flavour symmetries
- \circledast U-spin multiplet $B^{0}_{s} \rightarrow K^{*0}\overline{K}^{0}(\overline{K}^{*0}K^{0})$ to $B^{0} \rightarrow K^{*}K$

[LHCb, New J. Phys. 16 (2014) 12, 123001]

The $B_{s}^{0} \rightarrow K^{0}K^{\pm}\pi^{\mp}$ decay

R. Silva Coutinho (UZH)

ToyMC Laura++

[Com. Phys. Com. 231 (2018) 198-242]

Flavour-tagging is <u>unattractive</u> with current statistics \rightarrow even in the absence of \mathcal{P} , two amplitudes remain (i.e. A_f and \overline{A}_f) in an untagged decay-time integrated method

$$\Gamma_{\bar{B}^0_s \to f}(t) + \Gamma_{B^0_s \to f}(t) \propto \frac{e^{-t/\tau(B^0_s)}}{\tau(B^0_s)} \Big[\left(|\mathcal{A}_f|^2 + |\bar{\mathcal{A}}_f|^2 \right) \cosh \frac{\Delta \Gamma_s t}{2} - 2 \, \Re \left(\frac{q}{p} \mathcal{A}^*_f \bar{\mathcal{A}}_f \right) \sinh \frac{\Delta \Gamma_s t}{2} \Big] \Big]$$

In an untagged analysis it is, in general, <u>impossible</u> to disentangle the two components, except:

- [★] [B⁰→ K⁺π⁻π⁰] Final state assumed to be flavour-specific, so that one of the two possible contributions vanishes [BaBar, PRD 83 (2011) 112010]
 ⁵
- [B⁰_(s)→ K⁰_Sπ⁺π⁻] In time-integrated DP, resonances are either flavour specific (*e.g.* K^{*+}π⁻) or CP-conjugate (*e.g.* K⁰_Sρ⁰)

[LHCb, PRL 120, 261801 (2018)]

Conclusion: cannot perform an untagged Dalitz-plot analysis of a non-self-conjugate, non-flavour-specific final state without some assumption on A_f and \overline{A}_f .

[LHCb-PAPER-2018-045]

An effective DP model assumed [validated in simulation]

$$\mathcal{P}_f^{\text{sig}}(s,t) = \frac{|\mathcal{A}_f(s,t)|^2}{\int \int_{DP} |\mathcal{A}_f(s,t)|^2 \, ds \, dt}$$

$$\widehat{FF}_{j} = \frac{\int \int_{DP} |c_{j}F_{j}(s,t)|^{2} ds dt + \int \int_{DP'} \left| \overline{c}_{j}\overline{F}_{j}(s',t') \right|^{2} ds' dt'}{\int \int_{DP} \left| \sum_{k} c_{k}F_{k}(s,t) \right|^{2} ds dt + \int \int_{DP'} \left| \sum_{k} \overline{c}_{k}\overline{F}_{k}(s',t') \right|^{2} ds' dt'}$$

Although the presence of $\mathcal{O}P$ can be investigated, the complex coefficients obtained are not of trivial interpretation: only <u>fit fractions</u> are unbiased

[LHCb-PAPER-2018-045]

Strategy designed to enhance the DP signal yield and the amplitude fit (Dalitz plot) sensitivity, *i.e.* isobar parameters

- Boosted Decision Tree and particle identification to reject comb/misID backgrounds
- Mass vetoes for unwanted contributions
- Analysis performed with ~900 signal events and purity of 84%

Universität Zürich^{uz}^H

[LHCb-PAPER-2018-045]

Simultaneous unbinned DP fit based on the /Fit method within the Laura++ framework is performed for each event *i* and signal/background *k* component as

$$\mathcal{L} = \prod_{i}^{N_c} \left[\sum_{k} N_k \mathcal{P}_k \left(m_i^2 (K^{\pm} \pi^{\mp}), m_i^2 (K_{\mathrm{S}}^0 \pi^{\mp}) \right) \right]$$

Resonance	Spin	Model	Mass (MeV)	Width (MeV)
$\overline{K}^{*}(892)^{0}$	1	Rel BW	895.81 ± 0.19	47.4 ± 0.6
$K^{*}(892)^{\pm}$	1	$\operatorname{Rel}\mathrm{BW}$	891.66 ± 0.26	50.8 ± 0.9
$(\overline{K}_{0}^{*}(1430)^{0})$	0	LASS	1425 ± 50	270 ± 80
$K_0^*(1430)^{\pm}$	0	LASS	1425 ± 50	270 ± 80
$\overline{K}_{2}^{*}(1430)^{0}$	2	Rel BW	1432.4 ± 1.3	109 ± 5
$K_2^*(1430)^{\pm}$	2	Rel BW	1425.6 ± 1.5	98.5 ± 2.7

Signal model is built by:

- Significant changes in the negative log-likelihood, *i.e.* Wilks' theorem [Annals Math. Statist. 9 (1938) no.1, 60-62]
- Unbinned goodness-of-fit tests

[JINST 4 (2010) P09004]

[arXiv:1409.5080, Comput. Phys. Commun. 231 (2018) 198-242]

The results for the various sources of systematic uncertainties are given below

[Preliminary] Fit fraction (%) uncertainties									
Resonance	Yields	Bkg.	Eff.	Fit bias	Add. res.	Fixed par.	Alt. model	Method	Total
$K^{*}(892)^{-}$	0.2	0.2	0.5	0.2	_	0.7	5.4	3.1	6.3
$K_0^*(1430)^-$	0.1	0.2	0.6	0.3	0.1	2.1	22.0	2.9	22.3
$K_2^*(1430)^-$	0.1	0.1	0.3	0.6	0.1	1.8	2.2	0.2	2.9
$K^{*}(892)^{0}$	0.2	0.2	0.4	0.9	_	0.3	7.0	2.0	7.4
$K_0^*(1430)^0$	0.2	0.3	0.9	0.4	0.1	4.4	3.3	1.3	5.7
$K_2^*(1430)^0$	0.1	0.3	0.7	1.3	0.2	4.4	3.6	1.0	6.0
$K^{*}(892)^{+}$	0.4	0.1	0.6	0.5	0.1	0.7	1.1	0.7	1.8
$K_0^*(1430)^+$	0.5	0.4	0.7	0.8	0.2	6.4	13.0	4.5	15.2
$K_2^*(1430)^+$	0.1	0.2	0.4	0.2	0.1	4.1	4.5	3.2	6.9
$\overline{K}^{*}(892)^{0}$	0.4	0.3	0.4	0.2	0.2	0.5	3.0	7.9	8.5
$\overline{K}_{0}^{*}(1430)^{0}$	0.4	0.4	0.6	0.8	0.7	0.9	3.9	5.4	6.8
$\overline{K}_{2}^{*}(1430)^{0}$	0.1	0.2	0.4	0.8	0.1	1.0	5.5	2.7	6.3

Dominant uncertainties come from the K π S-wave model, e.g. the choice of the alternative line shapes to the LASS model for the K*±,0(1430) states

[Preliminary]						
$B_s^0 \rightarrow$	$ K_{\rm s}^0 K^+ \pi^- $	$B_s^0 \to K_s^0 K^- \pi^+$				
Resonance	Fit fraction $(\%)$	Resonance	Fit fraction $(\%)$			
$K^{*}(892)^{-}$	15.6 ± 1.5	$K^{*}(892)^{+}$	13.4 ± 2.0			
$K_0^*(1430)^-$	30.2 ± 2.6	$K_0^*(1430)^+$	28.5 ± 3.6			
$K_2^*(1430)^-$	2.9 ± 1.3	$K_2^*(1430)^+$	5.8 ± 1.9			
$K^{*}(892)^{0}$	13.2 ± 2.4	$\overline{K}^{*}(892)^{0}$	19.2 ± 2.3			
$K_0^*(1430)^0$	33.9 ± 2.9	$\overline{K}_{0}^{*}(1430)^{0}$	27.0 ± 4.1			
$K_2^*(1430)^0$	5.9 ± 4.0	$\overline{K}_{2}^{*}(1430)^{0}$	7.7 ± 2.8			

[LHCb-PAPER-2018-045]

[LHCb-PAPER-2018-045]

The fit fractions of the resonant components can be converted into quasi-two-body BF:

$$\mathcal{B}\left(B_{s}^{0} \to K^{*}K; K^{*} \to K\pi\right) = \widehat{FF}_{j} \times \mathcal{B}\left(B_{s}^{0} \to {}^{(}\overline{K}{}^{0}K^{\pm}\pi^{\mp}\right)$$

 $\begin{array}{l} \left(B_{s}^{0} \rightarrow \overleftarrow{K}^{0} K^{\pm} \pi^{\mp} \right) = (84.3 \pm 3.5 \pm 7.4 \pm 3.4) \times 10^{-6} \\ \left(B_{s}^{0} \rightarrow K^{*} (892)^{\pm} K^{\mp} \right) &= (18.6 \pm 1.2 \pm 0.8 \pm 4.0 \pm 2.0) \times 10^{-6} \\ \left(B_{s}^{0} \rightarrow K_{0}^{*} (1430)^{\pm} K^{\mp} \right) &= (31.3 \pm 2.3 \pm 0.7 \pm 25.1 \pm 3.3) \times 10^{-6} \\ \left(B_{s}^{0} \rightarrow K_{2}^{*} (1430)^{\pm} K^{\mp} \right) &= (10.3 \pm 2.5 \pm 1.1 \pm 16.3 \pm 1.1) \times 10^{-6} \\ \left(B_{s}^{0} \rightarrow \overleftarrow{K}^{*} (892)^{0} \overleftarrow{K}^{0} \right) &= (19.8 \pm 2.8 \pm 1.2 \pm 4.4 \pm 2.1) \times 10^{-6} \\ \left(B_{s}^{0} \rightarrow \overleftarrow{K}^{0} (1430)^{0} \overleftarrow{K}^{0} \right) &= (33.0 \pm 2.5 \pm 0.9 \pm 9.1 \pm 3.5) \times 10^{-6} \\ \left(B_{s}^{0} \rightarrow \overleftarrow{K}^{0} (1430)^{0} \overleftarrow{K}^{0} \right) &= (16.8 \pm 4.5 \pm 1.7 \pm 21.2 \pm 1.8) \times 10^{-6} \end{array} \right)$

[Summary]

- Results are in good agreement with, and more precise than, the previous measurements
- Contribution from K*0(1430)^(±,0) states are observed for the first time with significance above 10 standard deviations
- Further theoretical understanding of the S-wave modelling is paramount

Amplitude analysis of $B^0 \rightarrow (\pi^+\pi^-)(K^+\pi^-)$ decays

LHCb results : $\mathcal{L} = 3 \, \text{fb}^{-1} - 2011 + 2012 \, \text{dataset}$

Study of the $B0 \rightarrow \rho(770)^{0}K^{*}(892)^{0}$ mode

[LHCb-PAPER-2018-042]

Pablo Picasso [Portrait of Daniel-Henry Kahnweiler]

 $heta_{\pi\pi}$

A natural extension of the DP approach is to consider 4-body final states, which further increases the degrees of freedom of the system

 $B^0 \rightarrow (p_1p_2)(p_3p_4)$ decays are described using (e.g. $B^0 \rightarrow \rho^0 K^*$)

- * Three helicity angles: θ_1, θ_2, ϕ
- Two invariant masses: m_(p1p2), m_(p3p4)
- Decay rate given by

$$\frac{d^5\Gamma}{d\Omega dm_{\pi^+\pi^-}m_{\pi^+\pi^-}} \propto K(A_i, m_{\pi^+\pi^-}, m_{\pi^+\pi^-})F(\Omega)$$

Ø.

 B^0

 K^+

 π

 $\theta_{K\pi}$

W

The B⁰ $\rightarrow \rho^0(\pi^+\pi^-)K^*(K^+\pi^-)^0$ decay

Charmless b-hadron that proceeds via

Double Cabibbo suppressed tree
 A gluonic b → s penguin
 Comparable amplitudes: more sensitive
 to CP violation effects

Self-tagged decay:
$$\begin{cases} B^0 \to (\pi^+\pi^-)(K^+\pi^-) \\ \overline{B}^0 \to (\pi^-\pi^+)(K^-\pi^+) \end{cases}$$

$$\overline{b}$$

$$B^{0}$$

$$\overline{b}$$

$$W$$

$$\overline{s}$$

$$\overline{k^{*0}}$$

$$\overline{b}$$

$$\overline{u}, \overline{c}, \overline{t}$$

$$\overline{d}$$

 \bar{u}

Access to CP asymmetries:

$$a_{CP}^{dir} = \frac{|\mathcal{A}|^2 - |\bar{\mathcal{A}}|^2}{|\mathcal{A}|^2 + |\bar{\mathcal{A}}|^2} = \frac{-2rsin\delta sin\phi}{1 + r^2 + 2rcos\delta cos\phi}$$

In the absence of NP contributions:

$$\phi = \arg[(V_{tb}V_{ts}^*)/(V_{ub}V_{us}^*)] \Rightarrow \sin\phi = \sin\gamma_{\rm CKM}$$

"B \rightarrow VV puzzle": expected $f_L \gg f_{\parallel}$, f_{\perp} not seen in purely penguin modes

[LHCb, JHEP 03 (2018) 140, PRD 90, 052011 (2014)]

[LHCb-PAPER-2018-042]

Strategy designed to improve the signal significance and reduce possible physics contributions under the signal

- Boosted Decision Tree and mass vetoes to reject combinatorial and charm contributions
- Analysis performed with ~11k signal events and purity of 83%

Nominal model accounts for 10 decay channels

- $\diamond~
 ho^{0}$: Gounaris-Sakurai
- ω, K* (892)⁰:
 relativistic spin-1
 Breit-Wigners
- ♦ $f_0(500)$: spin-0 Breit-Wigner
- \diamond **f**₀(980): Flattè
- ♦ $f_0(1370)$: spin-0 Breit-Wigner
- ♦ $(K\pi)_0$: Lass with a Form Factor

A_i	$g_i(heta_{\pi\pi}, heta_{K\pi},\phi)$	$R_i(m_{\pi\pi}, m_{K\pi})$
$A^0_{\rho K^*}$	$\cos \theta_{\pi\pi} \cos \theta_{K\pi}$	$M_{\rho}(m_{\pi\pi})M_{K^*}(m_{K\pi})$
$ A_{\rho K^*}^{ }$	$\frac{1}{\sqrt{2}}\sin\theta_{\pi\pi}\sin\theta_{K\pi}\cos\phi$	$M_{\rho}(m_{\pi\pi})M_{K^*}(m_{K\pi})$
$A_{\rho K^*}^\perp$	$\frac{i}{\sqrt{2}}\sin\theta_{\pi\pi}\sin\theta_{K\pi}\sin\phi$	$M_{\rho}(m_{\pi\pi})M_{K^*}(m_{K\pi})$
$A^0_{\omega K^*}$	$\cos heta_{\pi\pi} \cos heta_{K\pi}$	$M_{\omega}(m_{\pi\pi})M_{K^*}(m_{K\pi})$
$A^{ }_{\omega K^*}$	$\frac{1}{\sqrt{2}}\sin\theta_{\pi\pi}\sin\theta_{K\pi}\cos\phi$	$M_{\omega}(m_{\pi\pi})M_{K^*}(m_{K\pi})$
$A_{\omega K^*}^{\perp}$	$\frac{i}{\sqrt{2}}\sin\theta_{\pi\pi}\sin\theta_{K\pi}\sin\phi$	$M_{\omega}(m_{\pi\pi})M_{K^*}(m_{K\pi})$
$A_{\rho(K\pi)}$	$\frac{1}{\sqrt{3}}\cos\theta_{\pi\pi}$	$M_{\rho}(m_{\pi\pi})M_{(K\pi)}(m_{K\pi})$
$A_{\omega(K\pi)}$	$\frac{1}{\sqrt{3}}\cos\theta_{\pi\pi}$	$M_{\omega}(m_{\pi\pi})M_{(K\pi)}(m_{K\pi})$
$A_{f_0(500)K^*}$	$\frac{1}{\sqrt{3}}\cos\theta_{K\pi}$	$M_{f_0(500)}(m_{\pi\pi})M_{K^*}(m_{K\pi})$
$A_{f_0(980)K^*}$	$\frac{1}{\sqrt{3}}\cos\theta_{K\pi}$	$M_{f_0(980)}(m_{\pi\pi})M_{K^*}(m_{K\pi})$
$A_{f_0(1370)K^*}$	$\frac{1}{\sqrt{3}}\cos\theta_{K\pi}$	$M_{f_0(1370)}(m_{\pi\pi})M_{K^*}(m_{K\pi})$
$A_{f_0(500)(K\pi)}$	$\frac{1}{3}$	$M_{f_0(500)}(m_{\pi\pi})M_{(K\pi)}(m_{K\pi})$
$A_{f_0(980)(K\pi)}$	$\frac{1}{3}$	$M_{f_0(980)}(m_{\pi\pi})M_{(K\pi)}(m_{K\pi})$
$A_{f_0(1370)(K\pi)}$	$\frac{1}{3}$	$M_{f_0(1370)}(m_{\pi\pi})M_{(K\pi)}(m_{K\pi})$

Dominant uncertainties come from the pollution of $a_1(1260)$ resonance

R. Silva Coutinho (UZH)

Fit results - projections

[LHCb-PAPER-2018-042]

Fitter implemented using Ipanema framework and similar strategy for kinematic effects

[arXiv:1706.01420]

Fit results - projections

[LHCb-PAPER-2018-042]

Fitter implemented using Ipanema framework and similar strategy for kinematic effects

[arXiv:1706.01420]

Fit results

[PRELIMINARY]

First measurements of several individual magnitude and phase

[PRELIMINARY] Strong phases, $\frac{1}{2}(\delta_{\overline{B}} + \delta_B)$ [rad] Weak phases, $\frac{1}{2}(\delta_{\overline{B}} - \delta_B)$ [rad] Parameter CP average CP asymmetry Parameter $\delta^0_{\rho K^*}$ $1.57 \pm 0.08 \pm 0.18$ $0.123 \pm 0.084 \pm 0.036$ $\delta^{\mu}_{\rho K^*} \delta^{\mu}_{\rho K^*} \delta^{0}_{\omega K^*} \delta^{0}_{\omega K^*} \delta^{\mu}_{\omega K^*}$ $|A^{0}_{\rho K^{*}}|^{2}$ $0.316 \pm 0.039 \pm 0.074$ $-0.75 \pm 0.07 \pm 0.17$ $0.795 \pm 0.030 \pm 0.068$ $0.014 \pm 0.030 \pm 0.026$ $\frac{|A_{\rho K^*}^{||}|^2}{|A_{\rho K^*}^{\perp}|^2}$ $0.701 \pm 0.038 \pm 0.084$ $-0.049 \pm 0.053 \pm 0.019$ $-2.365 \pm 0.032 \pm 0.054$ $0.000 \pm 0.032 \pm 0.013$ $0.668 \ \pm 0.036 \ \pm 0.068$ $-0.86 \pm 0.29 \pm 0.71$ $0.03 \ \pm 0.29 \ \pm 0.16$ $-0.187 \pm 0.051 \pm 0.026$ $\begin{array}{c} |A_{\omega K^*}|^2 \\ |A_{\omega K^*}|^2 \\ |A_{\omega K^*}|^2 \\ |A_{\omega K^*}|^2 \end{array}$ $0.019 \ \pm 0.010 \ \pm 0.012$ $-0.61 \pm 0.37 \pm 0.39$ $-1.83 \pm 0.29 \pm 0.32$ $0.59 \pm 0.29 \pm 0.07$ $0.0050 \pm 0.0029 \pm 0.0031$ $-0.30\ \pm 0.54\ \pm 0.28$ $1.58 \pm 0.43 \pm 0.63$ $-0.25 \pm 0.43 \pm 0.16$ $0.0020 \pm 0.0019 \pm 0.0015$ $-0.21 \pm 0.86 \pm 0.41$ $\delta_{\omega(K\pi)}$ $-2.32 \pm 0.22 \pm 0.24$ $-0.20 \pm 0.22 \pm 0.14$ $|A_{\omega(K\pi)}|^2$ $0.026 \pm 0.011 \pm 0.025$ $-0.47 \pm 0.33 \pm 0.45$ $-2.28 \pm 0.06 \pm 0.22$ $-0.002 \pm 0.064 \pm 0.045$ $\delta_{f_0(500)K^*}$ $|A_{f_0(500)K^*}|^2$ $0.532 \pm 0.048 \pm 0.098$ $-0.056 \pm 0.091 \pm 0.042$ $0.385 \pm 0.038 \pm 0.066$ $0.018 \pm 0.038 \pm 0.022$ $\delta_{f_0(980)K^*}$ $|A_{f_0(980)K^*}|^2$ ± 0.13 2.42 ± 0.25 $-0.022\pm0.052\pm0.023$ $\delta_{f_0(1370)K^*}$ $-2.757 \pm 0.051 \pm 0.089$ $0.076 \pm 0.051 \pm 0.025$ $|A_{f_0(1370)K^*}|^2$ 1.29 ± 0.09 ± 0.20 $-0.094 \pm 0.071 \pm 0.037$ $-2.80 \pm 0.09 \pm 0.21$ $-0.206 \pm 0.088 \pm 0.034$ $\delta_{f_0(500)(K\pi)}$ $|A_{f_0(500)(K\pi)}|^2$ $0.174 \pm 0.021 \pm 0.039$ $0.30 \pm 0.12 \pm 0.09$ $\delta_{f_0(980)(K\pi)}$ $-2.982 \pm 0.032 \pm 0.057$ $-0.027 \pm 0.032 \pm 0.013$ $|A_{f_0(980)(K\pi)}|^2$ $1.184 \pm 0.079 \pm 0.073$ $-0.083 \pm 0.066 \pm 0.023$ $1.76 \pm 0.10 \pm 0.11$ $-0.16 \pm 0.10 \pm 0.04$ $\delta_{f_0(1370)(K\pi)}$ $|A_{f_0(1370)(K\pi)}|^2$ $0.139 \pm 0.028 \pm 0.039$ $-0.48 \pm 0.17 \pm 0.15$ $\delta_{\rho K^*}^{||-\perp}$ $3.160 \pm 0.035 \pm 0.044$ $0.014 \pm 0.035 \pm 0.026$ $\begin{array}{c} f^{0}_{\rho K^{*}} \\ f^{||}_{\rho K^{*}} \\ f^{\perp}_{\rho K^{*}} \\ f^{0}_{\omega K^{*}} \\ f^{||}_{\omega K^{*}} \end{array}$ $0.164 \pm 0.015 \pm 0.022$ $-0.622 \pm 0.085 \pm 0.086$ $\delta^{||-0}$ $-0.772 \pm 0.085 \pm 0.061$ $-0.109 \pm 0.085 \pm 0.034$ $\begin{array}{c} \delta^{||-0}_{\rho K^*} \\ \delta^{\perp-0}_{\rho K^*} \\ \delta^{||-\perp}_{\omega K^*} \\ \delta^{||-\omega}_{\omega K^*} \\ \delta^{\perp-0}_{\omega K^*} \end{array}$ $0.435 \pm 0.016 \pm 0.042$ $0.188 \pm 0.037 \pm 0.022$ $-3.931 \pm 0.085 \pm 0.065$ $-0.123 \pm 0.085 \pm 0.035$ $0.401 \pm 0.016 \pm 0.037$ $0.050 \pm 0.039 \pm 0.015$ $0.68 \pm 0.17 \pm 0.16$ $-0.13 \pm 0.27 \pm 0.13$ $-3.41 \pm 0.52 \pm 0.73$ $0.84 \pm 0.52 \pm 0.16$ $0.22 \pm 0.14 \pm 0.15$ $0.26 \pm 0.55 \pm 0.22$ $-0.97\ \pm 0.41\ \pm 0.57$ $0.57 \pm 0.41 \pm 0.17$ $f_{\omega K^*}^{\perp}$ $0.096 \pm 0.094 \pm 0.091$ $0.34 \pm 0.81 \pm 0.37$ $2.44 \pm 0.51 \pm 0.82$ $-0.28 \pm 0.51 \pm 0.24$

0----0

Selected results

					[LH	
	[PRELIMINARY]					
	Observable	QCDF from Ref. [4]	pQCD from Ref. [11]	This work		
$f^0_{ ho K^*}$	CP average	$0.22\substack{+0.03+0.53\\-0.03-0.14}$	$0.65\substack{+0.03+0.03\\-0.03-0.04}$	$0.164 \pm 0.015 \pm$	0.022	
	CP asymmetry	$-0.30\substack{+0.11+0.61\\-0.11-0.49}$	$0.0364\substack{+0.0120\\-0.0107}$	$-0.622 \pm 0.085 \pm$	0.086	
			l			
$f_{ ho K^*}^{\perp}$	CP average	$0.39\substack{+0.02+0.27\\-0.02-0.07}$	$0.169 \begin{array}{c} ^{+0.027}_{-0.018}$	$0.401 \pm 0.016 \pm 0.016$).037	
	CP asymmetry		$-0.0771^{+0.0197}_{-0.0186}$	$0.050 \pm 0.039 \pm 0.039 \pm 0.0000$	0.015	
	Strong phage [rad]	0.7 +0.1+1.1	1 61 +0.02	$0.772 \pm 0.085 \pm$	0.061	
$ -0\rangle_{\rho K^*}$	Strong phase [rad]	-0.7 $-0.1-0.8$	-1.01 -3.06	$-0.112 \pm 0.085 \pm$	0.001	
Ś	Weak phase [rad]	$0.30\substack{+0.09+0.38\\-0.09-0.33}$	$-0.001\substack{+0.017\\-0.018}$	$-0.109 \pm 0.085 \pm$	0.034	
$\delta_{\rho K^*}^{ -\perp}$	Strong phase [rad]	$\equiv 0$	$0.01 \begin{array}{c} +0.02 \\ -4.30 \end{array}$	$3.160 \pm 0.035 \pm 0.035$	0.044	
	Weak phase [rad]	$\equiv 0$	$-0.003\substack{+0.025\\-0.024}$	$0.014 \pm 0.035 \pm 0.000$).026	

[Summary]

- \circledast First observation of CP violation in $B^0 \rightarrow VV$ angular distributions
- Low values for longitudinal polarisation might suggest the importance of EWP
 diagrams

Amplitude analyses of Charm decays

LHCb results : $\mathcal{L} = 3 \, \text{fb}^{-1} - 2011 + 2012$ dataset

Dalitz plot analysis of D+ \rightarrow K-K+K+ decays

[LHCb-PAPER-2018-039]

Search for CP violation through an amplitude analysis of $D^0 \to K^+ K^- \pi^+ \pi^-$ decays

[arXiv:1811.08304]

Paul Signac [The Papal Palace in Avignon]

[LHCb-PAPER-2018-039]

Further understanding on the resonant structure of the decays

Information about the K-K+ scattering amplitudes

Analysis performed with ~110k signal events and purity of 90% with 2 fb⁻¹

Large interference in the S-wave and limited understanding of underlying dynamics

$D^+ \rightarrow K^+K^-K^+$ phenomenological model

[LHCb-PAPER-2018-039]

1.3

1.35

 $m(K^+K)$ [GeV]

The decay amplitude can be expressed as

 $\phi(1020)$, $a_0(980)$ and mixture of $f_0(980)$

phase shifts/inelasticities in K-K+

and $f_0(1370)$

scattering

[Phys. Rev. D 98, 056021 (2018)]

1.05

1.1

1.15

1.2

60

40

20

0

-20

Amplitude analyses of Charm decays

LHCb results : $\mathcal{L} = 3 \, \text{fb}^{-1} - 2011 + 2012$ dataset

Dalitz plot analysis of $D^+ \rightarrow K^-K^+K^+$ decays

[LHCb-PAPER-2018-039]

Search for CP violation through an amplitude analysis of $D^0 \to K^+ K^- \pi^+ \pi^-$ decays

[arXiv:1811.08304]

Paul Signac [The Papal Palace in Avignon]

[arXiv:1811.08304]

Search for CP violation in an unprecedented statistics

Beyond quasi-two body approach - also considering resonances to 3-body

Analysis performed with ~160k signal events and purity of 83%

 $K\pi\pi$

Fit results

[arXiv:1811.08304]

Amplitude	Fit fraction $[\%]$	$\mathcal{A}^{CP}\left[\% ight]$	
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=0}$	$23.82 \pm 0.38 \pm 0.50$	$-1.8 \pm 1.5 \pm 0.2$	
$D^0 \to K_1(1400)^+ K^-$	$19.08 \pm 0.60 \pm 1.46$	$-4.5 \pm 2.1 \pm 0.3$	
$D^0 \to [K^- \pi^+]_{L=0} [K^+ \pi^-]_{L=0}$	$18.46 \pm 0.35 \pm 0.94$	$2.0 \pm 1.8 \pm 0.7$	
$D^0 \to K_1(1270)^+ K^-$	$18.05 \pm 0.52 \pm 0.98$	$-2.6 \pm 1.7 \pm 0.2$	
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=0}$	$9.18 \pm 0.21 \pm 0.28$	$-4.3 \pm 2.2 \pm 0.5$	I area co
$D^0 \to K^* (1680)^0 [K^- \pi^+]_{L=0}$	$6.61 \pm 0.15 \pm 0.37$	$2.6 \pm 2.2 \pm 0.4$	Large CC
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=1}$	$4.90 \pm 0.16 \pm 0.18$	$-2.6 \pm 3.2 \pm 0.3$	$\omega(1020)$
$D^0 \to K_1(1270)^- K^+$	$4.29 \pm 0.18 \pm 0.41$	$3.3 \pm 3.5 \pm 0.5$	ψ(1020)
$D^0 \to [K^+ K^-]_{L=0} [\pi^+ \pi^-]_{L=0}$	$3.14 \pm 0.17 \pm 0.72$	$5.1 \pm 5.1 \pm 3.1$	
$D^0 \to K_1(1400)^- K^+$	$2.82 \pm 0.19 \pm 0.39$	$-1.3 \pm 6.0 \pm 1.0$	
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=0}$	$2.75 \pm 0.15 \pm 0.19$	$6.2 \pm 5.2 \pm 1.5$	No
$D^0 \to [\overline{K}^*(1680)^0 K^*(892)^0]_{L=1}$	$2.70 \pm 0.11 \pm 0.09$	$-2.5 \pm 3.9 \pm 0.4$	
$D^0 \to \overline{K}^* (1680)^0 [K^+ \pi^-]_{L=0}$	$2.41 \pm 0.09 \pm 0.27$	$2.4 \pm 3.7 \pm 1.1$	(sensiti
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=2}$	$2.29 \pm 0.08 \pm 0.08$	$-0.1\pm \ 3.3\pm 0.5$	- + +1-
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=2}$	$1.85 \pm 0.09 \pm 0.10$	$-3.0\pm\ 5.0\pm0.7$	- at th
$D^0 \to \phi(1020)[\pi^+\pi^-]_{L=0}$	$1.49 \pm 0.09 \pm 0.33$	$5.8 \pm 6.1 \pm 0.8$	
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=1}$	$1.48 \pm 0.08 \pm 0.10$	$1.3 \pm 5.3 \pm 0.6$	
$D^0 \to [\phi(1020)\rho(1450)^0]_{L=1}$	$0.98 \pm 0.09 \pm 0.05$	$7.5 \pm 8.5 \pm 1.1$	20 x laro
$D^0 \to a_0(980)^0 f_2(1270)^0$	$0.70 \pm 0.05 \pm 0.08$	$1.5 \pm 7.2 \pm 1.3$	20 x laig
$D^0 \to a_1(1260)^+ \pi^-$	$0.46 \pm 0.05 \pm 0.22$	$-10.6 \pm 11.7 \pm 7.0$	Run-II
$D^0 \to a_1(1260)^- \pi^+$	$0.45 \pm 0.06 \pm 0.16$	$-8.7 \pm 13.7 \pm 2.9$	
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=1}$	$0.43 \pm 0.05 \pm 0.03$	$2.4 \pm 11.0 \pm 1.4$	
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=2}$	$0.33 \pm 0.05 \pm 0.06$	$8.5 \pm 14.3 \pm 3.5$	
$D^0 \to [K^+ K^-]_{L=0} (\rho - \omega)^0$	$0.27 \pm 0.04 \pm 0.05$	$21.3 \pm 12.5 \pm 2.8$	
$D^0 \to [\phi(1020)f_2(1270)^0]_{L=1}$	$0.18 \pm 0.02 \pm 0.07$	$3.6 \pm 13.3 \pm 3.0$	
$D^0 \to [K^*(892)^0 \overline{K}_2^*(1430)^0]_{L=1}$	$0.18 \pm 0.02 \pm 0.02$	$6.1 \pm 10.8 \pm 1.8$	
	$129.32 \pm 1.09 \pm 2.38$		
	9242/8121 = 1.14		
		_	

Large contributions from states as $\phi(1020) (\rho - w)^0$, K₁ and S-wave

No sign of CP is observed (sensitivity ranging from 1-15%) - at the SM at the order of 10⁻³

20 x larger statistics is expected for Run-II dataset

Summary

Multibody decays provide promising probes for the Standard Model

- * First measurement of a large S-wave contribution in $B_{s}^{0} \rightarrow \overline{K}^{0} K^{\pm} \pi^{\mp}$
- * First observation of $\mathcal{O} \mathcal{O}$ in $\mathbb{B}^0 \to VV$ angular distributions
- Synergy between theory-experiment is paramount
- Larger datasets from the LHCb Run-II+ upgrade will provide in the future the possibility to fully explore the potential of the field

R. Silva Coutinho (UZH)

M.C. Escher [Day and Night]

Les Nabis ("the Prophets"), *i.e.* artists who set the pace for painting in France in the 1980s

(re-incarnation) synergy between theorists and experimentalists in the pursue to understand the dynamics of multibody decays

P. Serusier [The Talism]