Quasiparticle systems

ヘロト ヘアト ヘヨト

Is there a lower bound for shear viscosity to entropy density ratio?

Antal Jakovác

BME Technical University Budapest

A. Jakovac, arXiv:0901.2802, arXiv:0911.3248

Quasiparticle systems

(a)

Outlines

Introduction

- Transport in plasma
- Lower bound for η/s

2 eta/s in field theory

- Generic formulae
- Transport coefficient
- Entropy density
- 3 Quasiparticle systems
 - Small width case
 - Wave function renormalization
 - High temperature effects
 - System with zero mass excitations

4 Conclusions

Quasiparticle systems

(日)、

Outlines

Introduction

- Transport in plasma
- Lower bound for η/s
- 2 eta/s in field theory
 - Generic formulae
 - Transport coefficient
 - Entropy density
- 3 Quasiparticle systems
 - Small width case
 - Wave function renormalization
 - High temperature effects
 - System with zero mass excitations
- 4 Conclusions

eta/s in field theory 000000000 Quasiparticle systems

・ロト ・ 同ト ・ ヨト

Conclusions

Transport in plasma

Outlines

Introduction

- Transport in plasma
- \bullet Lower bound for η/s
- 2 eta/s in field theory
 - Generic formulae
 - Transport coefficient
 - Entropy density
- 3 Quasiparticle systems
 - Small width case
 - Wave function renormalization
 - High temperature effects
 - System with zero mass excitations
- 4 Conclusions

イロト 不得 トイヨト イヨト

Transport in plasma

Inhomogeneous distribution of conserved charge density N

- \Rightarrow way to equilibrium
 - if elementary excitations are weakly interacting
 - independent smoothing of charge excess at each point
 - homogenization before equilibration
 - ballistic regime (gases)
 - strongly interacting systems
 - induced currents depend on the local environment
 - \Rightarrow linear response theory $J = -D\nabla N \Rightarrow \dot{N} = D \triangle N$
 - equilibration before homogenization
 - diffusive regime (fluids)

eta/s in field theory 000000000 Quasiparticle systems

イロト 不得 トイヨト イヨト

Conclusions

Transport in plasma

Diffusion constant

The order of magnitude of the diffusion constant D:

(au lifetime, ℓ mean free path, v velocity, σ cross section)

•
$$\dot{N} = D \triangle N \quad \Rightarrow \quad \frac{\delta N}{\tau} = D \frac{\delta N}{\ell^2} \quad \Rightarrow \quad D \sim \ell v \sim v^2 \tau \sim \frac{v}{n\sigma}$$

• D is large in weakly, small in strongly interacting systems

description sensible only in strongly interacting (fluid) systems

Determination of D

- in QFT from linear response $C(x) = \langle [J_i(x), J_i(0)] \rangle$ $\Rightarrow D = \lim_{\omega \to 0} \frac{C(\mathbf{k} = 0, \omega)}{\omega}$
- Boltzmann equations

Introduction 0000000000	eta/s in field theory 000000000	Quasiparticle systems	Conclusions
Transport in plasma			
Viscosity			

- \bullet transport coefficient in momentum transport $\quad\Rightarrow\quad$ viscosity
- $ho\dot{v} \sim \eta \Delta v$ (Navier-Stokes) $\Rightarrow \eta \sim
 ho v^2 \tau \sim \epsilon \tau$ (ϵ energy density)
- damping rate of small perturbations: $\Gamma = \frac{4k^2}{3\tau} \frac{\eta}{s}$.

Typical values of η/s :

- ullet water at room temperature ~ 30
- superfluid ⁴He at λ -point \sim 0.8
- smallest at the phase transition point

 \Downarrow

what is the smallest value for η/s ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

eta/s in field theory 000000000

Quasiparticle systems

・ロト ・ 同ト ・ ヨト

Conclusions

Lower bound for η/s Outlines

Introduction

- Transport in plasma
- Lower bound for η/s
- 2 eta/s in field theory
 - Generic formulae
 - Transport coefficient
 - Entropy density
- 3 Quasiparticle systems
 - Small width case
 - Wave function renormalization
 - High temperature effects
 - System with zero mass excitations
- 4 Conclusions

eta/s in field theory 0000000000 Quasiparticle systems

イロト イロト イヨト イヨト 三油

Conclusions

Lower bound for η/s

• argumentation: $\eta \sim \epsilon \tau$, $s \sim n \Rightarrow \frac{\eta}{s} \sim E \tau \gtrsim \hbar$

P. Danielewicz, M. Gyulassy, PRD 31, 53 (1985); P. Kovtun, D.T. Son, A.O. Starinets PRL 94, 111601 (2005).

• calculation: for $\mathcal{N} = 4$ SYM theory at $N_c \gg 1$, $\lambda = g^2 N_c \gg 1$ from graviton absorbtion in the dual 5D AdS gravity:

(P. Kovtun, D.T. Son, A.O. Starinets JHEP 0310, (2003) 064.)

- for weaker coupling we expect larger ratio: indeed, first λ , N_c corrections are positive (R.C. Myers, M.F. Paulos, A. Sinha, arXiv:0806.2156)
- universal for a wide class of theories (A. Buchel, R.C. Myers, M.F. Paulos, A. Sinha, Phys.Lett.B669:364-370,2008.; M. Haack, A. Yarom, arXiv:0811.1794)
- so far we did not find counterexamples experimentally
- \Rightarrow commonly accepted lower bound for η/s

Introduction 0000000000	eta/s in field theory 000000000	Quasiparticle systems	Conclusions
Lower bound for n/s			
RHIC data			

Non-central heavy ion collisions have initial anisotropy. Time evolution of anisotropy: the larger the viscosity, the more extent the initial anisotropy is washed out

(P. Romatschke, U. Romatschke, Phys.Rev.Lett.99:172301,2007.)

upper bound:
$$rac{\eta}{s}\lesssim 0.16$$
 \Rightarrow is there a lower bound?

Image: A matrix

eta/s in field theory 000000000 Quasiparticle systems

A D > A P > A

Conclusions

Lower bound for η/s

RHIC data: is there a lower bound?

RHIC seriously challenges the lower bound!

failed?

eta/s in field theory 000000000 Quasiparticle systems

Conclusions

Lower bound for η/s

Theoretical caveats

- $\mathcal{N} = 4$ SYM theory is not QCD
- higher curvature and dilaton corrections to 5D AdS actions $\Rightarrow \frac{\eta}{s} < \frac{1}{4\pi} \text{ is conceivable dual theory? unitarity?}$
- Counterexample: N non-interacting species $\Rightarrow \eta$ is not changed, $s \sim \ln N$ (mixing entropy) $\Rightarrow \frac{\eta}{s} \sim \frac{1}{\ln N}$ (A. Cherman, T. D. Cohen, and P. M. Hohler, JHEP 02, 026 (2008), 0708.4201.) metastable system? what is the case with limited N?

eta/s in field theory 000000000 Quasiparticle systems

Conclusions

Lower bound for η/s

Theoretical caveats

- $E\tau \gtrsim \hbar$? In fact $\Delta E\tau \gtrsim \hbar$! First is true only if $E > \Delta E$ Condition for (small width) quasiparticle system
- \Rightarrow $\,$ the argumentation is applicable only in quasiparticle systems
- in QFT there is always a continuum effect on η/s ?

pure hadron gas vs. hadron gas with continuum \Rightarrow considerable difference

(口) (同) (

(J. Noronha-Hostler, J. Noronha and C. Greiner, PRL 103, 172302 (2009), 0811.1571)

Introduction	eta/s in field theory	Quasiparticle systems	Conclusions
000000000			
Lower bound for η/s			

We need exact statements about $\frac{\eta}{s}$ from first principles! Result: there is a non-universal lower bound at finite entropy density; for smal s:

$$\left.\frac{\eta}{s}\right|_{min}\sim\frac{s}{N_QLT^4},$$

where

- N_Q : number of relevant quantum channels (species)
- L: interaction range

Quasiparticle systems

(日)、

Outlines

Introduction

- Transport in plasma
- Lower bound for η/s
- 2 eta/s in field theory
 - Generic formulae
 - Transport coefficient
 - Entropy density
- 3 Quasiparticle systems
 - Small width case
 - Wave function renormalization
 - High temperature effects
 - System with zero mass excitations
- 4 Conclusions

eta/s in field theory ●○○○○○○○○ Quasiparticle systems

・ロト ・ 同ト ・ ヨト

Conclusions

Generic formulae

- Introduction
 - Transport in plasma
 - Lower bound for η/s

\bigcirc eta/s in field theory

- Generic formulae
- Transport coefficient
- Entropy density
- 3 Quasiparticle systems
 - Small width case
 - Wave function renormalization
 - High temperature effects
 - System with zero mass excitations
- 4 Conclusions

Introduction	eta/s in field theory	Quasiparticle systems	Conclusio
	00000000		
Generic formulae			

Continuous spectrum: energy levels are not discrete

 \Rightarrow represented by a spectral function (density of states, DoS):

$$\sum_{n} \left| n \right\rangle \left\langle n \right| = V \sum_{\mathcal{Q}} \int \frac{d^{4}p}{(2\pi)^{4}} \, \varrho_{\mathcal{Q}}(p) \left| p, \mathcal{Q} \right\rangle \left\langle p, \mathcal{Q} \right| \equiv \int_{Q} \left| p, \mathcal{Q} \right\rangle \left\langle p, \mathcal{Q} \right|,$$

where Q denotes conserved quantities (quantum channel), $p = (p_0, \mathbf{p})$ is the total energy-momentum of the state.

- QM-based description use volume normalization to calculate densities
- effects of interaction
 - continuous DoS
 - temperature dependent DoS

eta/s in field theory

Quasiparticle systems

・ロト ・ 同ト ・ ヨト

Conclusions

Transport coefficient

Outlines

Introduction

- Transport in plasma
- Lower bound for η/s

\bigcirc eta/s in field theory

Generic formulae

Transport coefficient

- Entropy density
- 3 Quasiparticle systems
 - Small width case
 - Wave function renormalization
 - High temperature effects
 - System with zero mass excitations
- 4 Conclusions

0000000000	00000000	000000000000000	
	0000000		
ntroduction	eta/s in field theory	Quasiparticle systems	Conclusio

 $C_J(x) = \langle [J_i(x), J_i(0)] \rangle \Rightarrow \eta_J = \lim_{\omega \to 0} C_J(\omega)/\omega$ generic transport coefficient.

• insert complete basis of energy-momentum eigenstates

$$C_{J}(x) = \frac{1}{Z} \sum_{n,m} \left[\left\langle n \left| e^{-\beta H} J(x) \right| m \right\rangle \left\langle m \left| J(0) \right| n \right\rangle - \left\{ x \leftrightarrow 0 \right\} \right]$$

translation:

 $J(x) = e^{iPx}A(0)e^{-iPx} \quad \Rightarrow \quad \langle n | J(x) | m \rangle = e^{i(P_n - P_m)x} \langle n | J(0) | m \rangle$

• Fourier transformation, $p = (p_0, \mathbf{p})$

$$C_{J}(p) = \frac{1}{Z} \sum_{n,m} \left(e^{-\beta E_{n}} - e^{-\beta E_{m}} \right) (2\pi)^{4} \delta(p + P_{n} - P_{m}) |\langle m | J(0) | n \rangle|^{2}$$

◆□> ◆□> ◆三> ◆三> ●三 のへで

introduce spectral densities

eta/s in field theory

Quasiparticle systems

イロト 不同ト 不同ト 不同ト

Conclusions

Transport coefficient

$$\eta_J = \beta \frac{V^2}{\mathcal{Z}} \sum_{\mathcal{Q}} \int \frac{d^4k}{(2\pi)^4} \varrho_{\mathcal{Q}}^2(k) e^{-\beta k_0} |\langle k, \mathcal{Q} | J_i | k, \mathcal{Q} \rangle|^2.$$

• current matrix element: $\langle k, Q | J_i | k, Q \rangle = \mathcal{J}_Q(k) \frac{\kappa_i}{V k_0}$

- $\sim k_i/k_0 \sim v_i$ since J_i is a current
- in free case $\mathcal{J}_{\mathcal{Q}}(k)$ is the charge carried by the current: for electric current $\mathcal{J} = e$ charge, for viscosity $\mathcal{J} \sim k_j$ momentum
- in nonperturbative case $\mathcal{J}_{\mathcal{Q}}(k)$ can be momentum dependent.
- angular averaging

Finally:

$$\eta_J = \beta \frac{1}{3\mathcal{Z}} \sum_{\mathcal{Q}} \int \frac{d^4k}{(2\pi)^4} \frac{\mathbf{k}^2}{k_0^2} e^{-\beta k_0} \left(\mathcal{J}_{\mathcal{Q}}(k) \varrho_{\mathcal{Q}}(k) \right)^2.$$

Quasiparticle systems

・ロト ・ 同ト ・ ヨト

Conclusions

Entropy density

Introduction

- Transport in plasma
- Lower bound for η/s

2 eta/s in field theory

- Generic formulae
- Transport coefficient
- Entropy density
- 3 Quasiparticle systems
 - Small width case
 - Wave function renormalization
 - High temperature effects
 - System with zero mass excitations
- 4 Conclusions

Quasiparticle systems

. 4 .

(日) (同) (日) (日) (日)

Entropy density

free energy density
$$\mathcal{Z} = e^{-eta F} = \operatorname{Tr} e^{-eta H} = V \sum_{\mathcal{K}} \int \frac{d^4k}{(2\pi)^4} \, \varrho_{\mathcal{K}}(k) e^{-eta k_0}$$

Volume dependence of the free energy:

- for small sizes it is arbitrary
- as $V \to \infty$ we recover linear volume dependence
- crossover at scale L
 - volume elements larger than *L* interact weakly (surface interaction)
 - coarse graining scale \Rightarrow free energy density cen be defined at scales larger than L
 - *L* is also an effective IR cutoff for the interactions.
- \Rightarrow we choose a volume $V = L^3$ to define free energy density:

$$f = -\frac{T}{L^3} \ln \left(1 + L^3 \sum_{\mathcal{K}} \int \frac{d^4 k}{(2\pi)^4} \varrho_{\mathcal{K}}(k) e^{-\beta k_0} \right).$$

Quasiparticle systems

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Conclusions

Entropy density

The eta/s ratio

with
$$s = -\frac{\partial f}{\partial T}$$
 and with angular averaging

$$\frac{\eta}{s} = \frac{\frac{\beta}{3\mathcal{Z}} \sum_{\mathcal{K}} \int \frac{d^4k}{(2\pi)^4} \frac{\mathbf{k}^2}{k_0^2} e^{-\beta k_0} \left(\mathcal{J}_{\mathcal{K}}(k)\varrho_{\mathcal{K}}(k)\right)^2}{-\frac{\partial}{\partial T} \frac{T}{L^3} \ln\left(1 + L^3 \sum_{\mathcal{K}} \int \frac{d^4k}{(2\pi)^4} \varrho_{\mathcal{K}}(k) e^{-\beta k_0}\right)}.$$

Is there a lower bound in this formula?

Introduction
00000000000

Quasiparticle systems

Conclusions

◆□ → ◆□ → ◆三 → ◆三 → ● ● ●

Entropy density

Generic structure

Structure of η/s for small ϱ is

$$\frac{\eta_J}{s} \sim \frac{\int f_1 \varrho^2}{\int f_2 \varrho} \xrightarrow{\text{rescaling}} \frac{\left\langle \varrho^2 \right\rangle}{\left\langle \varrho \right\rangle}.$$

$$\left< \varrho^2 \right> \ge \left< \varrho \right>^2 \quad \Rightarrow \quad \text{we expect } \eta \gtrsim s^2 \text{ up to rescaling factors.}$$

Quasiparticle vs. non-quasiparticle systems:

• large peak in $\varrho \implies \varrho^2$ even larger $\implies \eta/s$ large

• ρ small everywhere $\Rightarrow \rho^2$ even smaller $\Rightarrow \eta/s$ small in non-quasiparticle systems η/s is naturally small!

Quasiparticle systems

Entropy density

Lower bound – mathematical approach

More exactly:

- need a sum rule in each energy channel $\int \frac{dk_0}{2\pi} \varrho_Q(k_0) = U_Q$
- minimize η by tuning ϱ with respecting the sum rules and keeping the entropy density constant.
- technically: Lagrange multiplicators
- two cases analytical: small/large s. The minimum values:

$$\frac{\eta}{s}\bigg|_{\min} \sim \frac{\mathcal{F}(L^3 s)}{N_Q(LT)^4}, \qquad \mathcal{F} = \begin{cases} x & \text{for small } x \\ e^x/x & \text{for large } x \end{cases}$$

 N_Q : number of effective quantum channels (species).

 \Rightarrow There is a lower bound at finite *s*, but it is not universal.

Quasiparticle systems

(日)、

Outlines

Introduction

- Transport in plasma
- Lower bound for η/s

2 eta/s in field theory

- Generic formulae
- Transport coefficient
- Entropy density
- 3 Quasiparticle systems
 - Small width case
 - Wave function renormalization
 - High temperature effects
 - System with zero mass excitations

Conclusions

Quasiparticle systems

イロン 不同と 不同と 不同と

Simplifications

For the concrete model calculations we use simplifications

• We use generalized quasiparticle systems:

$$f=T{\int}rac{d^4k}{(2\pi)^4}\;arrho_{QP}(k)\,(\mp)\ln\left(1\pm e^{-eta k_0}
ight).$$

• we omit the effect of \mathcal{J}_Q and define a "reduced" viscosity coefficient as

$$\bar{\eta} = \frac{\beta}{15} \int \frac{d^4k}{(2\pi)^4} \; \frac{(\mathbf{k}^2)^2}{k_0^2} \; e^{-\beta k_0} \; \varrho_{\mathcal{K}}^2(k).$$

eta/s in field theory 000000000

Quasiparticle systems

・ロト ・ 同ト ・ ヨト

Small width case

Outlines

Introduction

- Transport in plasma
- Lower bound for η/s

2 eta/s in field theory

- Generic formulae
- Transport coefficient
- Entropy density

Quasiparticle systems

Small width case

- Wave function renormalization
- High temperature effects
- System with zero mass excitations

4 Conclusions

Introduction	eta/s in field theory	Quasiparticle systems	Conclusion
		000000000000000000000000000000000000000	
Constitution of the second			

Assume that the lowest lying states can be approximated with Breit-Wigner form:

$$arrho(q) = rac{2\mathsf{\Gamma}}{(q_0 - arepsilon_q)^2 + \mathsf{\Gamma}^2}.$$

In the small width limit $\varrho(q)^2 \approx \frac{2}{\Gamma} 2\pi \delta(q_0 - \varepsilon_q)$. We find:

$$\frac{\bar{\eta}_{QP}}{s_{QP}} = \begin{cases} \frac{540}{\mathcal{A}_{\pm}\pi^4} \frac{T}{\Gamma}, & \text{if } \varepsilon_k = k \quad \mathcal{A}_{\pm} = (1, 8/7) \\ 30\pi \frac{T^2}{\Gamma m}, & \text{if } \varepsilon_k = m + \frac{k^2}{2m} \\ 16\pi \frac{m^2}{\Gamma T}, & \text{if } \varepsilon_k = \frac{k^2}{2m} \end{cases}$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへの

(日) (同) (日) (日) (日)

The value of Γ

- in conformal case $\Gamma \sim T \Rightarrow \frac{\eta_J}{s} \sim \text{constant}$ lower limit may come from infinte coupling, $1/4\pi$.
- massive case at low temperature: the width is the consequence of scattering on thermal particles
 - \Rightarrow abundance is $e^{-M/T}$ (*M*: energy of scattering state)

$$\Rightarrow \quad \frac{\eta_J}{s} \sim T e^{M/T} \to \infty.$$

 $\Rightarrow~$ in the quasiparticle case the conformal case represents a lower bound

eta/s in field theory 000000000 Quasiparticle systems

ヘロト ヘアト ヘヨト

- ∢ ≣ ▶

Small width case

Off-shell effects

We consider three examples of off-shell effects which can appear in physical systems

- wave function renormalization
- large width
- low temperature non-quasiparticle systems

eta/s in field theory 000000000 Quasiparticle systems

・ロト ・ 同ト ・ ヨト

Conclusions

Wave function renormalization

Outlines

Introduction

- Transport in plasma
- Lower bound for η/s

2 eta/s in field theory

- Generic formulae
- Transport coefficient
- Entropy density
- Quasiparticle systems
 - Small width case

• Wave function renormalization

- High temperature effects
- System with zero mass excitations

4 Conclusions

- - In the real case the quasiparticle peak never stands alone, there is always a continuum at higher energies.

Conclusions

• But the *complete* spectral function must obey the sum rule, like

$$1 = \int \frac{dk_0}{2\pi} \, \varrho(k_0) = \text{peak} + \text{continuum}.$$

• • • • • • • • • •

Therefore the peak must be reduced $\varrho_{QP} \rightarrow Z \varrho_{QP}$.

イロン 不得入 不良人 不良人 一度

Wave function renormalization

• At small temperatures the continuum contribution for η/s is much smaller than the QP contribution \Rightarrow

$$\frac{\eta}{s} \to Z \frac{\eta}{s}$$

 \Rightarrow wave function renormalization directly reduces the η/s ratio.

eta/s in field theory 000000000 Quasiparticle systems

・ロト ・ 同ト ・ ヨト

High temperature effects

Outlines

Introduction

- Transport in plasma
- Lower bound for η/s

2 eta/s in field theory

- Generic formulae
- Transport coefficient
- Entropy density

Quasiparticle systems

- Small width case
- Wave function renormalization

• High temperature effects

• System with zero mass excitations

4 Conclusions

High temperature effects

At high temperatures the quasiparticle peak melts into the continuum, forming a broad spectral function \Rightarrow the width can be larger than the peak position. A simplified example

$$\varrho(k_0, k) = \frac{2\pi}{E_2 - E_1} \Theta(E_1 < k_0 < E_2)$$

step function, where $E_{1,2}(k) = \sqrt{k^2 + m_{1,2}^2}$. At small temperatures ($T < m_1$)

$$\frac{\eta}{s} = 6\pi \frac{T}{\Delta m}$$

 $\Rightarrow~$ by broadening the distribution the viscosity to entropy density ratio has no lower bound

イロト イロト イヨト イヨト 三油

eta/s in field theory 000000000 Quasiparticle systems

イロン 不同と 不同と 不同と

Conclusions

High temperature effects

Realistic example

Self-energy corrections to a free particle leads to a Breit-Wigner-like form

$$arrho = rac{-2k_0\,\mathrm{Im}\,\Sigma}{(k^2-m^2-\,\mathrm{Re}\,\Sigma)^2+\,\mathrm{Im}\,\Sigma^2}$$

If we neglect the real part of the self energy we arrive at

$$\varrho_{BW}(k) = \frac{1}{\mathcal{N}} \frac{4\gamma_k^2 k_0}{(k_0^2 - E_k^2)^2 + \gamma_k^4}$$

 $\mathcal{N}\sim 1$ normalization factor

- for small γ/T the quasiparticle picture holds
- for large γ/T the $\eta/s \sim \gamma^2/T^2$
- turnover depends on the mass, for $m \to \infty$ the $\sim \gamma^2$ behaviour until zero!

 \Rightarrow in realistic cases $m \sim T$ find a lower bound at high temperature near $\gamma \sim T$.

・ロト ・回ト ・モト ・モト

Quasiparticle systems

System with zero mass excitations

Outlines

Introduction

- Transport in plasma
- Lower bound for η/s

2 eta/s in field theory

- Generic formulae
- Transport coefficient
- Entropy density

Quasiparticle systems

- Small width case
- Wave function renormalization
- High temperature effects

• System with zero mass excitations

4 Conclusions

eta/s in field theory 000000000 Quasiparticle systems

Conclusions

System with zero mass excitations

Non-quasiparticle excitations in real models

Simplest interacting field theories at zero temperature has a spectral function (DoS) like

- the Dirac-delta at *m* represents a stable particle
- the continuum at m + m' represents a multiparticle state.
- infinite lifetime \Rightarrow gas

What could spoil this simple picture?

eta/s in field theory 0000000000 Quasiparticle systems

Conclusions

System with zero mass excitations

Zero mass excitations

• If there are in the system zero mass particles, then m' = 0 \Rightarrow cut and the delta-peak melt together

eta/s in field theory 0000000000 Quasiparticle systems

ヘロト ヘアト ヘヨト

Conclusions

System with zero mass excitations

Zero mass excitations

- If there are in the system zero mass particles, then m' = 0 \Rightarrow cut and the delta-peak melt together
- 1-loop threshold behavior linear $\Rightarrow \rho \sim 1/(E E_{thr})$

• This is not normalizable! \Rightarrow IR divergences near the threshold, which smear out the 1/x singularity

eta/s in field theory 000000000 Quasiparticle systems

Conclusions

System with zero mass excitations

Zero mass excitations

• Interpretation: no single charged particle (electron, quark), it is always surrounded by soft gauge bosons

eta/s in field theory 000000000 Quasiparticle systems

Conclusions

System with zero mass excitations

Zero mass excitations

- Interpretation: no single charged particle (electron, quark), it is always surrounded by soft gauge bosons
- In QCD: from fitting to MC pressure data one obtains similar distribution of quasiparticle masses

(T.S.Biro, P.Levai, P.Van, J.Zimanyi, Phys.Rev.C75:034910,2007)

Quasiparticle systems

イロト イロト イヨト イヨト 三油

Conclusions

System with zero mass excitations

The η/s ratio at low temperatures

 $\varrho^{\#}e^{-\beta q_0}$ enhances the lowest lying states \Rightarrow power expand near the threshold:

$$\varrho(q) = \mathcal{C}q_0 \Theta(q - M)(q^2 - M^2)^w$$

C is dimensionfull: $[C] = [E]^{-2(1+w)}$ $\eta_J \sim C^2$ and $f \sim C \implies C$ remains in the ratio. In the massive and massless case we find

$$\frac{\eta_J}{s} \sim \mathcal{C}M^w T^{2+w} \quad \text{and} \quad \mathcal{C}T^{2(1+w)} \xrightarrow{T \to 0} \quad 0$$

for an integrable threshold (w > -1)

Quasiparticle systems

・ロト ・ 同ト ・ ヨト

Conclusions

Outlines

Introduction

- Transport in plasma
- Lower bound for η/s

2 eta/s in field theory

- Generic formulae
- Transport coefficient
- Entropy density
- 3 Quasiparticle systems
 - Small width case
 - Wave function renormalization
 - High temperature effects
 - System with zero mass excitations

4 Conclusions

イロト イヨト イヨト

Conclusions

- $1/4\pi$ lower bound for η/s is true only for quasiparticle and conformal theories
- in general the lower bound in a given environment depend on several factors; for small *s*

$$rac{\eta}{s} \gtrsim rac{s}{N_Q L T^4}$$

- there exist several models where $\eta/s < 1/4\pi$ is possible
 - quasiparticle with multiparticle continuum \Rightarrow wave function renormalization
 - finite temperature, broad spectral function
 - low temperature systems with zero mass excitation \Rightarrow there even η/s = is conceivable
- in QCD any of these effects can be important

Quasiparticle systems

・ロト ・ 同ト ・ ヨト ・ ヨト

Conclusions

Hydrodynamics

System with local collective flow: QM description? Construction of the system: at $t = -\infty$ equilibrium in rest $(\bar{u} = (1, 0, 0, 0))$, then a modified time evolution corresponding to the flow u – denote $\Delta u = u - \bar{u}$:

$$H^{(0)} = \bar{u}_{\mu}P^{(0)\mu} = u_{\mu}P^{\mu} = H + \Delta u_{\mu}T^{0\mu} \quad \Rightarrow \quad \delta H = -\int d^3x \,\Delta u_{\mu}T^{0\mu}$$

$$\delta H = \int_{-\infty}^{t} dt' \,\partial_0 \delta H = -\int_{-\infty}^{t} dt' d^3 x \left[\partial_0 u_\mu T^{0\mu} + \Delta u_\mu \partial_0 T^{0\mu} \right]$$

With energy-momentum conservation $\partial_0 T^{0\mu} = -\partial_i T^{i\mu}$ and partial integation

$$\delta H = -\int\limits_{-\infty}^t dt' d^3 \mathbf{x} \, \partial_\mu u_\nu T^{\mu\nu}$$

Quasiparticle systems

(日) (同) (日) (日) (日)

Conclusions

Linear response theory (→ the flowing and the original systems are not too far ⇒ nonrelativistic):

$$\delta \langle X(t) \rangle = i \int_{-\infty}^{t} dt' \int_{-\infty}^{t'} dt'' d^3 \mathbf{x}'' \langle [X(t), T^{\mu\nu}(\mathbf{x}'')] \rangle \partial_{\mu} u_{\nu}.$$

- Hydrodynamical approximation: $\partial u \approx \text{const.} \Rightarrow \delta \langle X \rangle$ time independent.
- spatial rotational symmetry of the ground state $\Rightarrow \delta \langle \pi_{ij} \rangle \equiv \delta \langle T_{ij} \frac{1}{3} \delta_{ij} T^k_{.k} \rangle = \frac{\eta}{2} \left[\partial_k v_\ell + \partial_\ell v_k \frac{2}{3} \delta_{k\ell} \partial v \right],$

the coefficient from above (denote $C(x) = \langle [T_{12}(0), T_{12}(x)] \rangle$

$$\eta = i \int_{-\infty}^{0} dt \int_{-\infty}^{t} dt' d^{3} \mathbf{x}' C(x') = \lim_{\omega \to 0} \frac{C(\omega, \mathbf{k} = 0)}{\omega}$$

Kubo formula

Quasiparticle systems

Conclusions

Zero temperature limit of viscosity

The viscosity η and the entropy have a common form

$$F_{n,m} = \frac{3a^5}{2\pi^3 T} \int \frac{d^4k}{(2\pi)^4} \Theta(k_0) \Theta(k^2 - \sigma^2) e^{-k_0/T} (ak_0)^n \varrho^m(k),$$

since

$$\eta = N^2 \Delta^2 F_{0,2}, \qquad s = 2F_{1,1}.$$

After reducing the integrals

$$a^{3}F_{n,m} = C(a\sigma)^{n} (a^{2}\sigma T)^{3/2} e^{-\sigma/T} \int_{0}^{\infty} dz \, e^{-z} \left(\frac{2(wz)^{5/2}}{1+(wz)^{5}}\right)^{m},$$

where $w = 2\Delta^{-2/5}T/\sigma$ rescaled temperature. BOTH η and *s* goes to zero at zero temperature