Observables from a 3+1 dimensional reativistic solution

Máté Csanád, Márton Vargyas arXiv.org/0909.4842 [nucl-th] Eötvös University Department of Atomic Physics

- Hydro models
- Observables
- Comparision to data

Hydrodynamic predictions

- Hydro predicts scaling (even viscous)
- What does a scaling mean?
 - See Hubble's law or Newtonian gravity: $v = \sqrt{2gh}$
 - Cannot predict acceleration or height
- Collective, thermal behavior →
 Loss of information
- Spectra slopes: $T_{eff} = T_0 + mu_t^2$
- Elliptic flow: $v_2 = \frac{I_1(w)}{I_0(w)} \sim w \sim KE_T$
- HBT radii: $R_{\text{side}}^2 \approx R_{\text{long}}^2 \approx R_{\text{out}}^2 \sim \frac{1}{m_t}$

m, (GeV)

11R sets (m

October 15, 2009

M. Csanád, Zimányi School 2009

Why we use hydrodynamics?

- Hadron & parton cascade models
 - Noneqilibrium models
 - Don't describe most of particle creation at low p_t
- Flow + hadronic cascade and resonance corrections
 - Small correction at RHIC energies (arXiv:0903.1863)
- Most of particle creation according to hydro
 - Pion and kaon HBT radii m_t scaling (Acta Phys.Polon.Supp.1:521-524,2008)
- After ~10 fm/c noneqilibrium expanding hadron gas
 - Anomal diffusion, no correction for spectra or flow (Braz.J.Phys.37:1002-1013,2007)
- American Institute of Physics: success of hydro is the physics story 2005

Perfect hydro picture

 No data point even near the kinematic viscosity of ⁴He (10/4π)

 Close to AdS/CFT minimum, (1/4π)

Little vocabulary of hydrodynamics

- Exact/parametric solution
 - Solution of hydro equations analytically, without approximation
 - Usually has free parameters
- Hydro inspired parameterization
 - Distribution determined at freeze-out only, their time dependence is not considered
- Numerical solution
 - Solution of hydro equations numerically
 - Start from arbitrary initial state

How analytic hydro works

- Take hydro equations and EoS
- Find a solution
 - Will contain parameters (like Friedmann, Schwarzschild etc.)
 - Will use a possible set of initial conditions
- Use a freeze-out condition
 - Eg fixed proper time or fixed temperature
 - Generally a hyper-surface
- Calculate the hadron source function
- Calculate observables
 - E.g. spectra, flow, correlations
 - Straightforward calculation
- Hydrodynamics: Initial conditions
 ^H
 dynamical equations
 freeze-out conditions

Equations of relativistic hydro

- Assuming local thermal equilibrium
- For a perfect fluid: $T^{\mu\nu} = wu^{\mu}u^{\nu} pg^{\mu\nu}$, $w = \varepsilon + p \implies \partial_{\nu}T^{\mu\nu} = 0$
- Equations in four-vector form and nonrelativistic notation
 - Euler equation: $wu^{\nu}\partial_{\nu}u^{\mu} = (g^{\mu\eta} - u^{\mu}u^{\eta})\partial_{\eta}p \quad \frac{w}{1 - v^{2}}\frac{d\mathbf{v}}{dt} = -\left(\nabla p + \mathbf{v}\frac{\partial p}{\partial t}\right)$
 - Energy conservation:

$$w\partial_{v}u^{v}+u^{v}\partial_{v}\varepsilon=0$$

- Charge conservation:

$$\partial_{\mu}(nu^{\mu})=0$$

$$\frac{d}{dt}\ln\frac{n}{\sqrt{1-v^2}} = -\nabla \mathbf{v}$$

 $\frac{1}{w}\frac{d\varepsilon}{dt} = -\nabla \mathbf{v} - \frac{1}{1 - v^2}\frac{d}{dt}\frac{v^2}{2}$

$$u^{\mu}\partial_{\mu} = \frac{d}{d\tau}$$

comoving propertime derivative

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \mathbf{v}\nabla$$

comoving derivative

M. Csanád, Zimányi School 2009

Famous solutions

- Landau's solution (1D, developed for p+p):
 - Accelerating, implicit, complicated, 1D
 - L.D. Landau, Izv. Acad. Nauk SSSR 81 (1953) 51
 - I.M. Khalatnikov, Zhur. Eksp.Teor.Fiz. 27 (1954) 529
 - L.D.Landau and S.Z.Belenkij, Usp. Fiz. Nauk 56 (1955) 309
- Hwa-Bjorken solution:
 - Non-accelerating, explicit, simple, 1D, boost-invariant
 - R.C. Hwa, Phys. Rev. D10, 2260 (1974)
 - J.D. Bjorken, Phys. Rev. D27, 40(1983)
- Others
 - Chiu, Sudarshan and Wang
 - Baym, Friman, Blaizot, Soyeur and Czyz
 - Srivastava, Alam, Chakrabarty, Raha and Sinha

Nonrelativistic solutions

Solution	Symmetry	Density prof.	EoS	Observables
Csizmadia et al. Phys. Lett. B443:21- 25, 1998	Sphere	Gaussian	$\varepsilon = \frac{3}{2}nT$	Calculated
Csörgő Central Eur.J.Phys.2: 556- 565,2004	Sphere	Arbitrary	$\varepsilon = \frac{3}{2}nT$	Not calculated
Akkelin et al. Phys.Rev. C67,2003	Ellipsoid	Gaussian (T=T(t))	$\varepsilon = \kappa(T)nT$	Calculated
Csörgő Acta Phys.Polon. B37:483-494,2006	Ellipsoid	Arbitrary (T=T(r,t))	$\varepsilon = \kappa n T$	Not calculated
Csörgő, Zimányi Heavy Ion Phys.17:281- 293,2003	Ellipsoid	Gaussian	$\varepsilon = \kappa_e nT - B$	Calculated

Relativistic solutions

Solution	Basic prop's	EoS	Observables
Csörgő, Nagy, Csanád Phys.Lett.B 663:306-311, 2008 Phys.Rev.C77:024908,2008	Ellipsoidal, 1D accelerating	$ \begin{array}{c} \varepsilon - B = \\ \kappa(p + B) \end{array} $	dn/dy, ε
Landau Izv. Acad. Nauk SSSR 81 (1953) 51	Cylindr., 1D, accelerating	$\varepsilon = \kappa n T$	none
Hwa-Björken R.C. Hwa, PRD10, 2260,1974 J.D. Bjorken, PRD27, 40(1983)	Cylindr., 1D, non-accelerating	$\varepsilon = \kappa n T$	dn/dy,ε
Bialas et al. A. Bialas, R. A. Janik, and R. B. Peschanski, Phys. Rev. C76, 054901 (2007).	1D, betweend Landau and Hwa-Björken	$\varepsilon = \kappa n T$	dn/dy
Csörgő, Csernai, Hama, Kodama Heavy Ion Phys. A 21, 73 (2004))	Ellipsoidal, 3D, non-accelerating	$\varepsilon = \kappa n T$	This work does the calculation

October 15, 2009

Where we are

- Revival of interest, new solutions
 - Sinyukov, Karpenko, nucl-th/0505041
 - Pratt, nucl-th/0612010
 - Bialas et al.: Phys.Rev.C76:054901,2007
 - Borsch, Zhdanov: SIGMA 3:116,2007
 - Nagy et al.: J.Phys.G35:104128,2008 and arXiv/0909.4285
 - Liao et al.: arXiv/09092284 and Phys.Rev.C80:034904,2009
 - Mizoguchi et al.: Eur.Phys.J.A40:99-108,2009
 - Beuf et al.: Phys. Rev. C78:064909,2008 (dS/dy as well!)
- Need for solutions that are:
 - accelerating + relativistic+ 3 dimensional
 - explicit + simple + compatible with the data
- Buda-Lund type of solutions: each, but not simultaneously
- Buda-Lund interpolator: hydro inspired source function, interpolates between 3-dimensional B-L solutions:

Non-relativistic, accelerating, 3d

B-L interpolator

Relativistic, non-accelerating 3d

The solution we investigate

- The hydro fields are these:
 - v(s) arbitrary, but realistic to choose Gaussian $v(s) = e^{-bs/2}$ b<0 is realistic
- Ellipsoidal symmetry

$$s = \frac{x^2}{X(t)^2} + \frac{y^2}{Y(t)^2} + \frac{z^2}{Z(t)^2}$$

$$n = n_0 \left(\frac{\tau_0}{\tau}\right)^3 \nu(s)$$
$$T = T_0 \left(\frac{\tau_0}{\tau}\right)^{(3/\kappa)} \frac{1}{\nu(s)}$$
$$p = p_0 \left(\frac{\tau_0}{\tau}\right)^{\left(3+\frac{3}{\kappa}\right)}$$

$$u^{\mu} = \gamma \left(1, \frac{\dot{X}(t)}{X(t)} x, \frac{\dot{Y}(t)}{Y(t)} y, \frac{\dot{Z}(t)}{Z(t)} z \right)$$

 $\frac{\dot{X}(t)}{X(t)}, \frac{\dot{Y}(t)}{Y(t)}, \frac{\dot{Z}(t)}{Z(t)}$

- (thermodynamic quantities const. on the s=const. ellipsoid)
- Directional Hubble-flow
 - v=Hr or H=v/r, the Hubble-constants:
 - $-\dot{X}(t), \dot{Y}(t), \dot{Z}(t): const.; \ \left(\dot{X}, \dot{Y}\right) \Leftrightarrow \left(u_t, \varepsilon\right)$

(T. Csörgő, L. P. Csernai, Y. Hama és T. Kodama, Heavy Ion Phys. A 21, 73 (2004))

Temperature dependence

Transverse temperature profile as a function of time $(3.5 \text{ fm/c} < \tau < 7 \text{ fm/c})$:

The source function

- Source function: probability of a particle created at *x* with *p*
- Maxwell-Boltzmann distribution + extra terms

$$S(x,p)d^{4}x = \mathcal{N}n(x)\exp\left[-\frac{p_{\mu}u^{\mu}(x)}{T(x)}\right]\frac{p_{\mu}u^{\mu}}{u^{0}}H(\tau)d^{4}x$$

- normalization
- $-H(\tau)d\tau$ freeze-out distribution
 - if sudden: $H(\tau) = \delta(\tau \tau_0)$
 - Cooper-Fry prefactor (flux term)
- $-\frac{p_{\mu}u^{\mu}}{u^{0}}d^{3}x$ Cooper-Fry - Validity: τ_{0} > R_{HBT}, m_t > T₀

 $-\mathcal{N}$

Single particle spectrum

- Source function: spatial origin and momentum
- Momentum distribution

integrate on spatial coordinates:

 $N_1(p) = \int_{\mathbb{R}^4} S(x, p) d^4 x$

- Second order Gaussian approximation around emission maximum
- After integration:

$$f_1(p) = \overline{N} \cdot \overline{E} \cdot \overline{V} \cdot \exp\left[\frac{p^2}{2ET_0} - \frac{E}{T_0} - \frac{p_x^2}{2ET_y} - \frac{p_y^2}{2ET_y} - \frac{p_y^2}{2ET_y} - \frac{P_y^2}{2ET_y}\right]$$

• Directional slope parameter:

$$T_{x} = T_{0} + \frac{ET_{0}\dot{X}_{0}^{2}}{b(T_{0} - E)}$$

Transverse momentum spectrum

- Go to mid-rapidity (y=0)
- Integrate on transverse angle ϕ $N_1(p_t) = \overline{N} \overline{V} \left(m_t - \frac{p_t^2 (T_{\text{eff}} - T_0)}{m_t T_{\text{eff}}} \right) \exp \left[-\frac{p_t^2}{2m_t T_{\text{eff}}} + \frac{p_t^2}{2m_t T_0} - \frac{m_t}{T_0} \right]$

– The effective temperature is from the slopes:

$$\begin{split} T_x &= T_0 + m_t \dot{X}^2 \, \frac{T_0}{b(T_0 - E)}, \ T_y = T_0 + m_t \dot{Y}^2 \, \frac{T_0}{b(T_0 - E)}, \\ \frac{1}{T_{\text{eff}}} &= \frac{1}{2} \left(\frac{1}{T_x} + \frac{1}{T_y} \right) \end{split}$$

The elliptic flow

• The elliptic flow can be calculated as:

$$v_{2} = \frac{\int_{0}^{2\pi} d\phi N_{1}(p_{t},\phi) \cos(2\phi)}{\int_{0}^{2\pi} d\phi N_{1}(p_{t},\phi)}$$

• Result (similar to other models):

$$v_2 = \frac{I_1(w)}{I_0(w)}$$

• $I_n(w)$: modified Bessel functions

$$I_n(w) = \frac{1}{2\pi} \int_0^{2\pi} e^{w\cos(2\phi)} \cos(2n\phi) d\phi$$

Where *w* is:
$$w = \frac{p_t^2}{4m_t} \left(\frac{1}{T_v} - \frac{1}{T_x}\right) \sim E_K \frac{\varepsilon}{T_{eff}}$$

Two-particle correlation radii

- Definition: $C_2(p_1, p_2) = \frac{N_2(p_1, p_2)}{N_1(p_1)N_1(p_1)}$
- From the source function: $C_2(q, K) = 1 + \lambda \left| \frac{\tilde{S}(q, K)}{\tilde{S}(0, K)} \right|^2$
- Changing coordinates $q = p_1 - p_2, K = 0.5(p_1 + p_2) \Rightarrow C_2(q, K) = 1 + \lambda \exp\left(-R_x^2 q_x^2 - R_y^2 q_y^2 - R_z^2 q_z^2\right)$ • Result: $R_i = \frac{T_0 \tau_0 (T_i - T_0)}{m_i T_i}$
- The usual scaling (same for kaons!): $R_i^2 \sim \frac{1}{m_i}$
- Bertsch-Pratt coordinates: $R_{out} = R_{side} = 0.5 \left(R_x^2 + R_y^2 \right)$
- Freeze-out: $\tau = \text{const.} \leftrightarrow \Delta \tau = 0 \rightarrow R_{out} = R_{side}$

Single pion spectum with HBT radii

• 0-30% centrality, Au+Au, PHENIX

• T ₀	$197 \pm 2 \text{ MeV}$	central freeze-out temp.	
3	0.85 ± 0.01	momentum space ecc.	
• u_t^2/b	$-0.95 \pm 0.07 \text{ (b<0)}$	transv. flow/temp. grad	
• τ_0	7.6 ± 0.1	freeze-out proper time	
• χ^2	215 (29 with theory error)		
ctober 15, 2009	M. Csanád, Zimányi	School 2009	

Elliptic flow

• 0-92% centrality, Au+Au, PHENIX (R.P. method technique)

October 15, 2009

Summary of the fit results

- Freeze-out temperature around 200 MeV
- Flow strongly depends on centrality
- Momentum space eccentricity: 0.3-0.9
 - This is flow assymmetry
- Average transverse flow and temp. gradient:
 Strongly coupled, ratio around 0.3-1.0 (with b<0)
- Confidence levels very low
- With estimated 3% theory error: acceptable

- Revival of interest in perfect hydro
- Our model: a 3+1d relativistic model without acceleration
- Calculated particle source $\rightarrow N_1$, v₂, HBT
- Compared to PHENIX data
- Describes data (but low conf. level)

Thank you for your attention