Critical Opalescence: A Smoking Gun Signature for a Critical Point

T. Csörgő

Department of Physics, Harvard University, Cambridge, MA MTA KFKI RMKI, Budapest, Hungary

based on arXiv:0903.0669 [nucl-th]

4 steps 4 definitive CEP measurements

What about

- random fields?
- experimentally measurable order pars ?
- 1st order PT: speed of sound, latent heat?

1. Identify:

What type of transition chiral ? deconfinement ? quarkionic ? liquid-gas?

2. Locate: Where is $({\sf T}_{_{E^{\prime}}}\,\mu_{_{E}})?$ At what centrality, $\sqrt{s_{NN}}$? critical opalescence onset of 1st order PT

> 3. Characterize: measure order parameters, critical exponents, universality classes.

4. Controll: Cross-checks for consistency, significance, quality.

Correlations for VARIOUS Quark Matters

Transition to hadron gas may be:

1st order (strong) 2nd order (Critical Point, CP) Cross-over Non-equilibrium, e.g. from a supercooled state (scQGP)

Type of phase transition: its correlation signature:

Strong 1st order QCD phase transition: (Pratt, Bertsch, Rischke, Gyulassy) $R_{out} >> R_{side}$

2nd order QCD phase transition: (T. Cs, S. Hegyi, T. Novák, W.A. Zajc) non-Gaussian shape

Cross-over quark matter-hadron gas: (lattice QCD, Buda-Lund hydro fits) hadrons appear from

Supercooled QGP (scQGP) -> hadrons: (T. Cs, L.P. Csernai) example to pion flash $(R_{out} \sim R_{side})$

α(Lévy) decreases to 0.5

a region with $T > T_c$

same freeze-out for all particles strangeness enhancement no mass-shift of ϕ

Excitation of 3d Gaussian fit parameters

STAR, Phys.Rev.C71:044906,2005

These data indicate

$$
\mathsf{R}_{\text{out}} \sim \mathsf{R}_{\text{side}}
$$

hence exclude: Strong, equilibrium 1st order phase transit. > 50 hydro models

For a second order PT:

check excitation function of non-Gaussian parameter $α$

New analysis / new data are needed

HBT Radii independent of energy perhaps initial volume ? subtle mt dependencies?

Excitation of 3d Gaussian fit parameters

PHENIX, Phys. Rev. Lett. 93, 152302 (2004)

Critical Opalescence

Critical Opalescence: a laboratory method to observe a 2nd order PT

correlation length diverges, clusters on all scales appear incl. the wavelength of the penetrating (laser) probe

side view: http://www.msm.cam.ac.uk/doitpoms/tlplib/solidsolutions/videos/laser1.mov

front view: matter becomes opaque at the critical point (CP)

Opical opacity κ **and attenuation length** λ

$$
I = I_0 \exp(-\kappa x) = I_0 \exp(-x/\lambda)
$$

\n
$$
\kappa = \frac{I(\text{generated}) - I(\text{transmitted})}{I(\text{generated})\Delta x}
$$

\n
$$
R_{AA} = \frac{I(\text{transmitted})}{I(\text{generated})} = \frac{I(\text{measured})}{I(\text{expected})}
$$

\n
$$
I(\text{measured}) = \frac{1}{N_{event}^{AA}} \frac{d^2 N_{AA}}{dy d p_t}
$$

\n
$$
I(\text{expected}) = \frac{\langle N_{coll} \rangle}{\sigma_{inel}^{NN}} \frac{d^2 \sigma_{NN}}{dy d p_t}
$$

$$
\frac{\partial I}{\partial x} = -\kappa I
$$

$$
\kappa = -\frac{\ln(R_{AA})}{R_{HBT}}
$$

Opical opacity κ **and attenuation length** λ

$$
\kappa = -\frac{\ln(R_{AA})}{R_{HBT}} \qquad \lambda = \frac{1}{\kappa} = -\frac{R_{HBT}}{\ln(R_{AA})}
$$

Table 1: Examples of opacities κ and attenuation lengths λ in $\sqrt{s_{NN}}$ = 200 GeV Au+Au reactions, evaluated from nuclear modification factors measured at $p_t = 4.75$ GeV/c in ref. [36] and using HBT radii of ref. [37], averaged over both directions and charge combinations, at the same centrality class as R_{AA} .

No max in opacity or min in attenuation length is seen wrt centrality Contrast: for a 5 GeV γ on lead, $\lambda = 6.2$ mm **RHIC perfect fluid is more opaque (to jets), than lead (to** γ**) - by 12 orders of magnitude** for details: see nucl-th/0903.0669v3

Critical Opalescence: a smoking gun signature of a 2nd order PT New experimental definition of opacity / attenuation length: A combination of attenuation (R_{AA}) and lengthscale (e.g. R_{HBT}) is needed

$$
I = I_0 \exp(-\kappa x) = I_0 \exp(-x/\lambda)
$$

$$
\kappa = -\frac{\ln(R_{AA})}{R_{HBT}}
$$

CPOD@BNL, 10/06/09 T. Csörgő Use optical opacity and look for maximal opalescence! Alternative lengthscale measurement: $R(HBT)$ = $p_{_{0}} + p_{_{1}}N_{_{part}}$ 1/3 Estimate Npart and take $\bm{{\mathsf{p}}}_{_{\!0}}$ and $\bm{{\mathsf{p}}}_{_{\!1}}$ from HBT measurements Possible: azimuthally sensitive $\mathsf{R}_{_{\mathsf{A}\mathsf{A}}}$ and $\mathsf{R}_{_{\mathsf{H}\mathsf{B}\mathsf{T}}}$: azimuthally sensitive opacity Further refinements: beyond Gaussian approximation, e.g. use R(Lévy)

Characterizing critical phenomena

Theoretical order parameter of QCD - quark condensate:
Experimental order parameter is needed:

- Experimental order is needed: The formulation of in-medium mass-shift
	- for deconfinement, signal of quark degrees of freedom

Understandable in laymen's terms: quark scaling of particle ratios

$$
\frac{\overline{\Lambda}|\overline{\Sigma}}{\Lambda|\Sigma} = \frac{\overline{p}}{p} \left[\frac{K}{\overline{K}}\right],
$$
\n
$$
\frac{\overline{\Xi}}{\Xi} = \frac{\overline{p}}{p} \left[\frac{K}{\overline{K}}\right]^2,
$$
\n
$$
\frac{\overline{\Lambda}|\overline{\Sigma}}{\Xi} = \frac{\overline{p}}{p} \left[\frac{K}{\overline{K}}\right]^3,
$$
\n
$$
\frac{\overline{\Lambda}|\overline{\Sigma}}{\Lambda|\Sigma} = \left[\frac{\overline{Q}}{Q}\right]^2 \left[\frac{\overline{Q}}{Q}\right]^2
$$
\n
$$
\frac{\overline{\Xi}}{\Xi} = \left[\frac{\overline{Q}}{Q}\right]^2 \left[\frac{\overline{Q}}{Q}\right]^2
$$
\n
$$
\frac{\overline{Q}}{\Xi} = \left[\frac{\overline{Q}}{Q}\right] \left[\frac{\overline{Q}}{Q}\right]^2
$$

$$
\frac{\overline{p}}{p} = \left[\frac{\overline{Q}}{Q}\right]^3,
$$

$$
\frac{\overline{\Lambda}|\overline{\Sigma}}{\Lambda|\Sigma} = \left[\frac{\overline{Q}}{Q}\right]^2 \left[\frac{\overline{S}}{S}\right],
$$

$$
\frac{\overline{\Xi}}{\overline{\Xi}} = \left[\frac{\overline{Q}}{Q}\right] \left[\frac{\overline{S}}{S}\right]^2,
$$

$$
\frac{\overline{\Omega}}{\overline{\Omega}} = \left[\frac{\overline{S}}{S}\right]^3,
$$

$$
\frac{\overline{K}}{K} = \frac{\overline{Q}S}{Q\overline{S}}.
$$

J. Zimányi, T. Biró, T.Cs, P. Lévai, Phys.Lett.B472:243-246
A. Bialas, Phys.Lett.B442:449-452,1998 A. Bialas, Phys.Lett.B442:449-452,1998

Order parameter for chiral symmetry from HBT, using λ **(m_t, √s_{NN})**

Order parameter for deconfinement from identified particle v₂

Idea: look for the break down of the quark number scaling If scaling: quark degrees of freedom are active (exp. view) Measure: v_2/n_q as a function of KE_τ/n_q of identified particles needs high statistics PID measurement at low $\sqrt{s}_{_{\sf NN}}$

Critical Exponents at 2nd order PT

Relevant and important quantities: critical exponents, universality classes Reduced temperature: $t = (T - T_c)/T_c$ Exponent of specific heat: $|C(T) \sim |t|^{-\alpha} + \text{less singular.}$ ϵ and ϵ Exponent of order $\langle |\phi| \rangle \sim |t|^{\beta}$ for $t < 0$ parameter: Exponent of correlation $\xi \sim |t|^{-\nu}$ length : Exponent of susceptibility:

 $\int d^3x \; G_{\alpha\beta}(x) \sim t^{-\gamma}$

Critical Exponents (2)

Exponent of the Fourier-transformed correlation function:

Exponent of order parameter in external field:

$$
G_{\alpha\beta}(k \to 0) \sim k^{-2+\eta}
$$

$$
\langle |\phi| \rangle (t=0, H \rightarrow 0) \sim H^{1/\delta}
$$

 There are thus 6 critical exponents, α, β, γ, δ, ν, η but only 2 are independent:

Exponents <-> universality class!

$$
\alpha = 2 - d\nu
$$

$$
\beta = \frac{\nu}{2}(d - 2 + \eta)
$$

$$
\gamma = (2 - \eta)\nu
$$

$$
\delta = \frac{d + 2 - \eta}{d - 2 + \eta}.
$$

Two particle Interferometry

for non-interacting identical bosons

$$
A_{12} = \frac{1}{\sqrt{2}} [e^{ip_1 \cdot (r_1 - x)} e^{ip_2 \cdot (r_2 - y)} + e^{ip_1 \cdot (r_1 - y)} e^{ip_2 \cdot (r_2 - x)}]
$$

so that

$$
\mathcal{P}_{12} = \int d^4\pmb{x} \, d^4\pmb{y} \, |A_{12}|^2 \rho(\pmb{x}) \rho(\pmb{y}) = 1 + |\tilde{\rho}(q)|^2 \equiv C_2(q)
$$

emission function

$$
C(p_1, p_2) = 1 + \frac{\left| \int d^4x \cdot S(x, K) \cdot e^{iq \cdot x} \right|^2}{\left| \int d^4x \cdot S(x, K) \right|^2}
$$

$$
q = p_1 - p_2
$$

$$
q = p_1 - p_2
$$
 $K = \frac{1}{2}(p_1 + p_2)$

Correlations for various collisions

Correlations have more information (3d shape analysis) Use advanced techniques & extract it (\sim medical imaging)

CEP: Scale invariant (Lévy) sources

Fluctuations appear on many scales,

final position is a sum of many random shifts:

$$
x = \sum_{i=1}^{n} x_i, \qquad f(x) = \int \Pi_{i=1}^{n} dx_i \Pi_{j=1}^{n} f_j(x_j) \delta(x - \sum_{k=1}^{n} x_k).
$$

correlation function measures a Fourier-transform,

that of an n-fold convolution:

$$
\tilde{f}(q) = \int dx \exp(iqx) f(x), \quad \tilde{f}(q) = \prod_{i=1}^{n} \tilde{f}_i(q),
$$

Lévy: generalized central limit theorems adding one more step in the convolution does not change the shape

$$
\tilde{f}_i(q) = \exp(iq\delta_i - |\gamma_i q|^\alpha), \qquad \prod_{i=1}^n \tilde{f}_i(q) = \exp(iq\delta - |\gamma q|^\alpha)
$$

$$
\gamma^\alpha = \sum_{i=1}^n \gamma_i^\alpha, \qquad \delta = \sum_{i=1}^n \delta_i.
$$

Correlation functions for Lévy sources

Correlation funct of stable sources:

$$
C(q;\alpha)=1+\lambda\exp{(-|qR|^\alpha)}
$$

R: scale parameter

- α : shape parameter or Lévy index of stability
- $\alpha = 2$ Gaussian, $\alpha = 1$ Lorentzian sources

Further details: T. Cs, S. Hegyi and W. A. Zajc, EPJ C36 (2004) 67

Correlation signal of the CEP

If the source distribution at CEP is a Lévy, it decays as:

$$
\rho(R) \propto R^{-(1+\alpha)}\Big|
$$

at CEP, the tail decreases as:

$$
\rho(R) \propto R^{-(d-2+\eta)}
$$

Levy index of stability 2.5 2 1.5 ರ 0.5 θ -0.5 0.5 Ω -1 T

hence: α as a function of $\tau = \mid T - T_c \mid / T_c$

$$
\alpha(L\acute{e}vy)=\eta(3d\;Ising)=0.50\pm0.05
$$

T. Cs, S. Hegyi, T. Novák, W.A.Zajc,

Acta Phys. Pol. B36 (2005) 329-337

Critical exponents, universality class

Lévy fits to PHENIX prel. Au+Au @ 200 GeV

Summary

4 steps for a definitive result on CEP:

- **identify type of phase transition**
- **locate**
- **characterize**
- **cross-check**

Concept of optical opacity:

- **both attenuation measure, R**_{AA}
- <u>a sa sababaran sa sa</u> <u>- and lengthscale measure R_{HBT} needed</u>

perfect fluid at RHIC: 12 orders of magn more opaque than Pb for γ

Critical Opalescence: Smoking gun signature to locate CEP

Levy stable Bose-Einstein/HBT correlations

critical exponent η

Backup slides

Signal of first order phase transitions from HBT Rout/Rside(m^t , √sNN)

Idea: look first order phase transition where R_{out}/R_{side} >>1 Measure: Gaussian HBT radii for pions (if possible kaons too)

Lattice QCD: EoS of QCD Matter

At the Critical End Point, the chiral phase transition is of 2nd order. Stepanov, Rajagopal, Shuryak: (Static) universality class of QCD = 3d Ising model PRL 81 (1998) 4816

Measure by two-particle correlations

Single particle spectrum: averages over space-time information

$$
E\frac{dN}{d\mathbf{p}} = \int dx^4 S(x, \mathbf{p})
$$

 sensitivity to space-time information Correlations:

$$
C_2(\mathbf{q}) = \frac{dN_2/d\mathbf{p}_1 d\mathbf{p}_2}{(dN_1/d\mathbf{p}_1)(dN_1/d\mathbf{p}_2)} \approx \int d\mathbf{r} \left[\Phi(\mathbf{r}, \mathbf{q}) \right]^2 S(\mathbf{r}, \mathbf{q})
$$

FSI Solve function

Intensity interferometry, HBT technique, femtoscopy ….

Search for a 1st order QCD PT

QGP has more degrees of freedom than pion gas

Entropy should be conserved during fireball evolution

 Look in *hadronic* **phase Hence: for signs of: Large size, Large lifetime, Softest point of EOS**

possible signal of a 1st order phase trans.

But are the correlation data Gaussian?

Non-Gaussians, 2d E802 Si+Au data

E802 Si+Au data, $sqrt(s_{NN}) = 5.4$ GeV Z. Fodor, S.D. Katz: $T_F = 162 \pm 2$ MeV, $\mu_{\text{\tiny E}} = 360$ ±40 MeV l (hep-lat/0402006 systematics: this meeting

Best Gaussian: bad shape

Non-Gaussian structures, 2d, UA1 data

Femptoscopy signal of sudden hadronization

Buda-Lund hydro: RHIC data follow the predicted (1994-96) scaling of HBT radii

 $\textsf{hep-ph}/9406365$ $\textcolor{red}{\blacksquare}$ $\textcolor{red}{\blacksquare}$ T. Cs, L.P. Csernai T. Cs, B. Lörstad hep-ph/9509213

Hadrons with T>T_c: 1st order PT excluded hint of a cross-over M. Csanád, T. Cs, B. Lörstad and A. Ster, nucl-th/0403074

Backup slides (2)

1 st milestone: new phenomena

Suppression of high p^t particle production in Au+Au collisions at RHIC

2 nd milestone: new form of matter

3 rd milestone: Top Physics Story 2005

http://arxiv.org/abs/nucl-ex/0410003

PHENIX White Paper: second most cited in nucl-ex during 2006

4 th Milestone: A fluid of quarks

Strange and even charm quarks participate in the flow

Milestone # 5: Perfection at limit! All "realistic" hydrodynamic calculations for RHIC fluids to date have assumed zero viscosity

- η **= 0** →**"perfect fluid"**
- **But there is a (conjectured) quantum limit:**

$$
\eta \ge \frac{\hbar}{4\pi} (Entropy Density) = \frac{\hbar}{4\pi} s
$$

"A Viscosity Bound Conjecture", P. Kovtun, D.T. Son, A.O. Starinets, hep-th/0405231 Where do "ordinary" fluids sit wrt this limit? 200 **(4** π**)** η**/s > 10 ! Example 19** Helium 0.1 MPa Nitrogen 10 MPa

RHIC's perfect fluid (4 π**)** η**/s ~1 on this scale: The hottest (T > 2 Terakelvin) and the most perfect filuid ever made…**
fluid ever made…

World Context: Search for the CEP

