Self-similar solution of a telegraph-type equation for heat propagation

Imre Ferenc Barna 1 & Robert Kersner 2

- 1) KFKI Atomic Energy Research Institute of the Hungarian Academy of Sciences
- 2) University of Pécs, PMMK Department of Mathematics and Informatics

Outline

- Motivation (infinite propagation speed with the diffusion/heat equation)
- A Way-out (Cattaneo equ., different derivation of the telegraph eq. & properties)
- Derivation of a self-similar telegraph- type equation
- Two different kind of solutions & properties

Ordinary diffusion/heat conduction equation

$$\mathbf{q} = -k \nabla U(x,t), \quad \nabla \mathbf{q} = -\gamma \frac{\partial U(x,t)}{\partial t}$$
 $\mathbf{U}(\mathbf{x},\mathbf{t})$ temperature distribution

urier law + conservation law

$$\begin{cases} u_t(x,t) - ku_{xx}(x,t) = 0 & -\infty < x < \infty, \quad 0 < t < \infty \\ u(x,t=0) = \delta(x) \end{cases}$$
 lie PDA, no time-reversal sym.

- strong maximum principle ~ solut $\Phi(x,t) = \int \frac{1}{\sqrt{4\pi kt}} exp\left(-\frac{x^2}{4kt}\right)$
- the fundamental solution:

$$u(x,t) = \int \Phi(x-y,t)g(y)dy$$

$$u(x,t) = \int \Phi(x-y,t)g(y)dy \qquad u(x,0) = g(x) \quad for -\infty < x < \infty \quad and \quad 0 < t < \infty$$

- kernel is non compact = inf. prop. speed
- Problem from a long time ⊗

$$u(x,t) = t^{-\alpha} f(x/t^{\beta})$$

But have self-similar solution @

The wave equation

$$\frac{\partial^2 u(x,t)}{\partial t^2} - c^2 \frac{\partial^2 u(x,t)}{\partial x^2} = 0, \quad u(x,0) = g(x), \quad \frac{\partial u(x,0)}{\partial t} = h(x)$$

- hyperbolic PDA with finite wave propagation speed, time reversal symmetry
- the general d'Alambert solution is

$$u(x,t) = \frac{1}{2} \left[g(x-ct) + g(x+ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} h(\xi) \, d\xi$$
 which is a sum of two travelling waves

Different derivations of the telegraph equ.

- Electrodynamics
- Random walk for diffusion
- Ad-hoc derivation from hydrodynamics for particle diffusion
- Cattaneo heat conduction equ.

Electrodynamics

Taking the Maxwell Equation for a medium

$$\mathbf{D} = \epsilon \mathbf{E}, \quad \mathbf{B} = \mu \mathbf{H}, \quad \mathbf{j} = \sigma \mathbf{E}$$

$$\operatorname{curl} \mathbf{H} = \frac{\epsilon}{c} \frac{\partial \mathbf{E}}{\partial t} + \frac{4\pi\sigma}{c} \mathbf{E} \qquad (16.2)$$

$$\operatorname{curl} \mathbf{E} = -\frac{\mu}{c} \frac{\partial \mathbf{H}}{\partial t} \qquad (16.3)$$

$$\operatorname{div} \mathbf{H} = 0 \qquad (16.4)$$

$$\operatorname{div} \mathbf{E} = 0 \qquad (16.5)$$

Curl Eq 16.2 and plug into 16.3 use 16.4

$$\Delta \mathbf{H} = \frac{\epsilon \mu}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{H} + \frac{4\pi \mu \sigma}{c^2} \frac{\partial}{\partial t} \mathbf{H}$$

we have the telegraph eq.

other derivation is possible for two realistic wires with R,L,C

Random walk for diffusion

$$P^{+}(x,t)$$

$$P^{-}(x,t)$$

deriv. is only for 1 dim, P probability

$$P(x,t) = P^{+}(x,t) + P^{-}(x,t)$$

$$P^{+}(x,t) = a P^{+}(x-\eta, t-\tau) + b P^{-}(x-\eta, t-\tau)$$

$$P^{-}(x,t) = a P^{-}(x+\eta, t-\tau) + b P^{+}(x+\eta, t-\tau)$$

a = b = 1/2 symmetric prob to right and left

$$P(x,t) = \frac{1}{2}P(x+\eta, t-\tau) + \frac{1}{2}P(x-\eta, t-\tau)$$

Expansion of the right-hand side in the powers of η and τ yields

$$P(x,t) = \frac{1}{2} \left[P(x,t) + \eta \frac{\partial P}{\partial x} - \tau \frac{\partial P}{\partial t} + \frac{1}{2} \eta^2 \frac{\partial^2 P}{\partial x^2} - \eta \tau \frac{\partial^2 P}{\partial x \partial t} + \frac{1}{2} \tau^2 \frac{\partial^2 P}{\partial t^2} + \frac{1}{2} \tau$$

$$P(x,t) - \eta \frac{\partial P}{\partial x} - \tau \frac{\partial P}{\partial t} + \frac{1}{2} \eta^2 \frac{\partial^2 P}{\partial x^2} + \eta \tau \frac{\partial^2 P}{\partial x \partial t} + \frac{1}{2} \tau^2 \frac{\partial^2 P}{\partial t^2} + 0\{(\eta + \tau)^3\}$$

or

$$\frac{\partial P}{\partial t} = \frac{1}{2} \frac{\eta^2}{\tau} \frac{\partial^2 P}{\partial x^2} + \frac{1}{2} \tau \frac{\partial^2 P}{\partial t^2} + 0 \left\{ \frac{(\eta + \tau)^3}{\tau} \right\} .$$

Ad hoc derivation from a basic set of hydrodynamical equations

$$\frac{\partial x_i}{\partial x_i} = 0$$

stationary continuity eq.

$$\frac{\partial \mathbf{u_i}}{\partial \mathbf{t}} + \frac{\partial}{\partial \mathbf{x_j}} (\mathbf{u_i} \mathbf{u_j}) = -\rho^{-1} \frac{\partial \mathbf{p}}{\partial \mathbf{x_i}} + \nu \nabla^2 \mathbf{u_i} + \mathbf{g_i}$$

Navier-Stokes eq.

An instantaneous equation for conservative concentration, S, is

written as

$$\frac{\partial S}{\partial t} + \frac{\partial}{\partial x_1} (u_1 S) = D\nabla^2 S$$
,

where D is the molecular diffusivity.

where (u₁S) is the turbulent flux

Idea no direct study of N-S but the diffusion

Reynolds decomposition average + fluct.

$$u_{i} = \overline{u}_{i} + u'_{i}$$

$$p = \overline{p} + p'$$

$$g_{i} = \overline{g}_{i} + g'_{i}$$

$$S = \overline{S} + S'$$

just plug them back

Ad hoc derivation from a basic set of hydrodinamical equations

After some tedious algebra, and with neglecting terms we get

$$\frac{\partial^2 \overline{S}}{\partial t^2} + \tau^{-1} \frac{\partial \overline{S}}{\partial t} = \frac{\partial}{\partial x_i} \left(\overline{u'_i u'_j} \frac{\partial \overline{S}}{\partial x_j} \right) .$$

For stationary and isotropic turbulence,

$$u_i^{\dagger}u_j^{\dagger} = u_i^{\dagger 2} \delta_{ij} \equiv w_i^2 \delta_{ij}$$

Therefore,

$$\frac{\partial^2}{\partial t^2} \overline{S} + \tau^{-1} \frac{\partial \overline{S}}{\partial t} = w^2 \nabla^2 \overline{S} .$$

This is the telegraph equation in three-dimensional space.

the gradient is equal with a time scale times the turb. flux

$$\frac{\partial}{\partial \mathbf{x}_{\mathbf{j}}} \overline{\mathbf{u}_{\mathbf{i}}^{\mathbf{i}} \mathbf{u}_{\mathbf{j}}^{\mathbf{i}} \mathbf{S}^{\mathbf{i}}} \equiv \tau^{-1} \overline{\mathbf{u}_{\mathbf{i}}^{\mathbf{i}} \mathbf{S}^{\mathbf{i}}} \quad (\tau \ge 0)$$

the time average of the velocity tensor is a scalar

Cattaneo heat conduction equ.

$$\tau \frac{\partial \mathbf{q}}{\partial t} + \mathbf{q} = -k \nabla T(x, t)$$

Cattaneo heat conduction law

$$abla \mathbf{q} = -\gamma rac{\partial T(x,t)}{\partial t}$$

Energy conservation law

T(x,t) temperature distribution q heat flux k effective heat conductivity heat capacity relaxation time

 $c = \sqrt{k/\tau \gamma}$ is the sound of the transmitted heat wave.

General properties of the solution

Figure 1. Behaviors in wavenumber space

- a) Telegraph equation
- b) Wave equation
- c) Diffusion equation

decaying travelling waves

$$T(x,t) \propto e^{-\lambda t} f(x-ct)$$

$$T(x, t) = e^{-\lambda t} I_0 \left(\frac{\lambda}{2c} \sqrt{(c^2t^2 - x^2)} \right)$$

Bessel function

Problem:

- 1) no self-similar diffusive solutions $T(x,t) = t^{-\alpha} f(\eta)$ $\eta = \frac{x}{t^{\beta}}$.
- 2) oscillations, T<0?

Our telegraph-like equation and self-similar solution

Modifying the Cattaneo law and keeping in mind the Ansatz

$$T(x,t) = t^{-\alpha}f(\eta)$$
 with $\eta = \frac{x}{t^{\beta}}$

we got an equation

$$\epsilon \frac{\partial^2 T(x,t)}{\partial t^2} + \frac{a}{t} \frac{\partial T(x,t)}{\partial t} = \frac{\partial^2 T(x,t)}{\partial x^2}$$

There are differential eqs. for $f(\eta)$ only for $\alpha = \beta = +1$ or $\alpha = -2$ and $\beta = +1$

Solution for Case I

$$\alpha = \beta = +1$$

$$\epsilon(\eta^2 f(\eta))'' - a(\eta f(\eta))' = f''(\eta)$$

a total difference = conserved quantity

$$\epsilon(\eta^2 f(\eta))' - a\eta f(\eta) = f'(\eta) + c_1$$

There are two different cases:

$$c_1 = 0$$
 or $c_1 \neq 0$.

$$c_1 = 0$$

$$a = 4.1, \epsilon = 1.$$

$$f(\eta) = (1 - \epsilon \eta^2)^{\frac{a}{2\epsilon} - 1}$$

2 Important new feature: the solution is a product of 2 travelling wavefronts if $a > 4\epsilon$, $f'(\eta) = 0$ no flux conservation problem $T(x,t) \sim U(x-ct)U(x+ct)$

 $c_1 \neq 0$.

$$\begin{split} f(\eta) = & \ (\epsilon \eta^2 - 1)^{\frac{a}{2\epsilon} - 1} \left[c_1 \{ signum(\epsilon \eta^2 - 1) \}^{\frac{a}{2\epsilon} - 1} \{ - signum(\epsilon \eta^2 - 1) \}^{\frac{a}{2\epsilon} - 1} \\ & \eta F(1/2, a/2/\epsilon; 3/2; \epsilon \eta^2) + c_2] \end{split}$$

where F(a,b;c;z) is the hypergeometric function

$$F(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n} \frac{z^n}{n!} \qquad a,b,c,z \quad \epsilon \; C$$

$$(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)} \qquad (a)_0 = 1, \quad (a)_n = a(a+1) \cdots (a+n-1) \quad n=1,2,3,\dots$$

- some elementary functions can be expressed via F In our case if $\frac{a}{2\epsilon}$ Integer or Half-Integer are important the 4 basic cases:

$$\frac{a}{2\epsilon} = \frac{1}{2}$$
, $F\left(\frac{1}{2}, \frac{1}{2}; \frac{3}{2}; \epsilon \eta^2\right) = \frac{\arccos(\sqrt{\epsilon}\eta)}{\sqrt{\epsilon}\eta}$

$$\frac{a}{2\epsilon} = 0, \quad F\left(0, \frac{1}{2}; \frac{3}{2}; \epsilon \eta^2\right) = 1 \qquad \frac{a}{2\epsilon} = 1, \quad F\left(1, \frac{1}{2}; \frac{3}{2}; \epsilon \eta^2\right) = \frac{1}{2\sqrt{\epsilon}\eta} \ln\left(\frac{1+\sqrt{\epsilon}\eta}{1-\sqrt{\epsilon}\eta}\right)$$

$$\frac{a}{2\epsilon} = \frac{1}{2}, \quad F\left(\frac{1}{2}, \frac{1}{2}; \frac{3}{2}; \epsilon \eta^2\right) = \frac{\arccos(\sqrt{\epsilon}\eta)}{\sqrt{\epsilon}\eta} \qquad \frac{a}{2\epsilon} = \frac{3}{2}, \quad F\left(\frac{3}{2}, \frac{1}{2}; \frac{3}{2}; \epsilon \eta^2\right) = \frac{1}{(1 - \epsilon \eta^2)}$$

with the following recursion all the other cases can be evaluated

$$(c-a)F(a-1,b;c;z) + (2a-c-az+z)F(a,b;c;z) + a(z-1)F(a+1,b;c;z) = 0$$

two examples for negative parameters

$$\frac{a}{2\epsilon} = -2, \quad \epsilon > 0 \quad F\left(-1,\frac{1}{2};\frac{3}{2};\epsilon\eta^2\right) = 1 - \frac{\epsilon\eta^2}{3}$$

$$\frac{a}{2\epsilon} = -\frac{1}{2}, \quad \epsilon > 0, \quad F\left(\frac{-1}{2}, \frac{1}{2}; \frac{3}{2}; \epsilon \eta^2\right) = \frac{1}{2} \left\{ (1/2 - \epsilon \eta^2) \frac{\arcsin(\sqrt{\epsilon}\eta)}{\sqrt{\epsilon}\eta} - \frac{\epsilon \eta^2 - 1}{2(1 - \epsilon \eta^2)^{1/2}} \right\}$$

for non integer/half-integer values an inifinte series comes out

- what can we learn from this?
- Well, in some cases the domain and range of $f(\eta)$ ompact
- Hyperbolic feature, like the wave-equation
 - in some cases the domain and range of

parabolic feature

$$\eta$$
 hypergeom $\left(\left[\frac{1}{2},2\right],\left[\frac{3}{2}\right],\eta^2\right)\left(\eta^2-1\right)$

$$\frac{\frac{1}{\operatorname{signum}(\eta^2 - 1)^{5/2}} \left(\left(-\operatorname{signum}(\eta^2 - 1) \right)^5 \right.}{\left. \operatorname{signum}(\eta^2 - 1)^{5/2} \left(\left[\frac{1}{2}, \frac{5}{2} \right], \left[\frac{3}{2} \right], \eta^2 \right) \left(\eta^2 - 1 \right)^{3/2} \right)}$$

only when a

 $\frac{a}{2c}$ is half integer

The solution T(x,t)

$$\left(\left(\frac{1}{t}\right)\cdot\left(\frac{x}{t}\right) \text{ hypergeom}\left(\left[\frac{1}{2}, 2\right], \left[\frac{3}{2}\right], \left(\frac{x}{t}\right)^2\right) \left(\left(\frac{x}{t}\right)^2 - 1\right), x = 0..3, t = 0.1..3\right)$$

$$\left(\frac{1}{\operatorname{signum}\left(\left(\frac{x}{t}\right)^{2}-1\right)^{5/2}}\left(\left(\frac{1}{t}\right)\cdot\left(-\operatorname{signum}\left(\left(\frac{x}{t}\right)^{2}-1\right)\right)^{5}\right)$$

$$\left(\frac{x}{t}\right)\operatorname{hypergeom}\left(\left[\frac{1}{2},\frac{5}{2}\right],\left[\frac{3}{2}\right],\left(\frac{x}{t}\right)^{2}\right)\left(\left(\frac{x}{t}\right)^{2}\right)$$

$$\left(-1\right)^{3/2}\right), x = 0 \dots 1, t = 0.01 \dots 0.1$$

Solution for Case II

$$\alpha = -2$$
 and $\beta = +1$

$$f''(\eta)[\epsilon \eta^2 - 1] - f'(\eta)\eta[2\epsilon + a] + 2f(\eta)[\epsilon + a] = 0.$$

$$f(\eta) = \left[c_1 P_{\frac{-a}{2\epsilon}}^{\frac{a}{2\epsilon}+2}(\sqrt{\epsilon}\eta) + c_2 Q_{\frac{-a}{2\epsilon}}^{\frac{a}{2\epsilon}+2}(\sqrt{\epsilon}\eta)\right] (\epsilon\eta^2 - 1)^{\frac{a}{4\epsilon}+1},$$

 $P_{-a/2\epsilon}^{\frac{4\epsilon+a}{2\epsilon}}(\sqrt{\epsilon\eta})$ and $Q_{-a/2\epsilon}^{\frac{4\epsilon+a}{2\epsilon}}(\sqrt{\epsilon\eta})$ are the associated Legendre functions

For the regular solution:

$$P_{\nu}^{\mu}(\sqrt{\epsilon\eta}) = \frac{1}{\Gamma(1-\mu)} \left(\frac{1+\sqrt{\epsilon\eta}}{1-\sqrt{\epsilon\eta}} \right)^{\mu/2} F\left(-\nu, \nu+1; 1-\mu; 1/2-\sqrt{\epsilon\eta}/2\right) - 1 < \sqrt{\epsilon\eta} < 1$$
(98)

After some algebra of the hypergeometric function we get:

$$P_{-\frac{a}{2\epsilon}}^{\frac{a}{2\epsilon}+2}(\sqrt{\epsilon}\eta)(\epsilon\eta^2-1)^{\frac{a}{4\epsilon}+1} = -2\frac{([a+\epsilon]\eta^2+1)(\frac{1}{2})^{(-\frac{a}{2\epsilon})}}{\Gamma(\frac{-a}{2\epsilon})}. \text{ A second order polinomial } \otimes$$

The regular solution

$$f(\eta) = P_{-\frac{a}{2\epsilon}}^{\frac{a}{2\epsilon}+2} \sqrt{\epsilon} \eta) [\epsilon \eta^2 - 1]^{\frac{a}{4\epsilon}+1}$$

$$T(x,t) = t^2 P_{-\frac{a}{2\epsilon}}^{\frac{a}{2\epsilon}+2} (\sqrt{\epsilon}x/t) [\epsilon(x/t)^2 - 1]^{\frac{a}{4\epsilon}+1}$$
 for $a = 1, \epsilon = 1$

The irregular solution

Till now it is not possible to write it in closed form

$$f(\eta) = Q_{-\frac{a}{2\epsilon}}^{\frac{a}{2\epsilon}+2} (\sqrt{\epsilon}\eta) [\epsilon \eta^2 - 1]^{\frac{a}{4\epsilon}+1}$$

$$T(x,t)=t^2Q_{-\frac{a}{2\epsilon}}^{\frac{a}{2\epsilon}+2}(\sqrt{\epsilon}x/t)[\epsilon(x/t)^2-1]^{\frac{a}{4\epsilon}+1}\ for\ a=1,\ \epsilon=1$$

both P and Q are non-compact solutions = parabolic property

Summary and Outlook

we presented various derivations and interpretation of the telegraph equation

As a new feature we presented a new telegraph-type equation with self-similar solutions It has both parabolic and hyperbolic properties

further work is in progress to clear out the dark points and improve physical interpretation