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Outline

M (0] t’ va t’ on (infinite propagation speed with the diffusion/heat equation)

Two different kind of solutions & properties



Ordinary diffusion/heat
conduction equation
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U(x,t) temperature distribution
urier law + conservation law

(. t) — kg, (2,8) =0 —co <z <00, 0<t<0

,. . vlic PDA, no time-reversal sym.
u(x,t =0) = d(x)

the fundamental solution:

u(z,t) = / Oz —y,t)g(y)dy M U(z,0)=glz) for—o0<z <0 and 0<t<x

kernel is non compact = inf. prop. speed i
Problem from a long time & ulz, t) =1t""f(x/ )
But have self-similar solution ©




The wave equation

FPulz.t) L Pu(z, t) _ Aulz, 0)

— — o — =0. wlzx.0)=qlx), — = hi{x)
- dr= ' S giE). ot s

hyperbolic PDA with finite wave
propagation speed, time reversal symmetry

the general d’Alambert solution is
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which is a sum of two travelling waves



Different derivations of the telegraph
equ.

Electrodynamics

Ad-hoc derivation from hydrodynamics
for particle diffusion



Taking the Maxwell Equation for a medium
p=10

curl H = $E+4HJE

c of C

t dH
curl E = —LT

c ot
divH =0

divE =1

Curl Eq 16.2 and plug into 16.3 use 16.4

we have the telegraph eq.

other derivation is possible for two realistic wires with R,L,C
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deriv. is only for 1 dim, P probability
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Ad hoc derivation from a basic set of
hydrodynamical equations

stationary continuity eq.

Navier-Stokes eq.

An instantaneous equebion for conservetlve concentration, S5, i

where is the
e 3 . turbUIent ﬂllX
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written as

where I is the molecular ddffusivity.

Reynolds
decomposition
average + fluct. jc3

just plug them back



Ad hoc derivation from a basic set of
hydrodinamical equations

After some tedious algebra, and with neglecting terms we get

the gradient is equal with a time
scale times the turb. flux

the time average of the
velocity tensor is a scalar

Therefore,

= wipeg

This is the telegraph equation in three-dimenaional space.




Cattaneo heat conduction law

Energy conservation law

T(x,t) temperature distribution
q heat flux

k effective heat conductivity
Wlheat capacity

Ell relaxation time
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o) TELEGRAPH decaying travelling waves

Problem:

c) DIFFUSION , 1) no self-similar diffusive

I

solutions MERIETRSit]

Figure 1. Behavioras in wavenumber opeaoes
a) Telesgraph eguation

R = r O 2) oscillations, T<0 ?




Our telegraph-like equation and
self-similar solution

Modifying the Cattaneo law and keeping in mind the Ansatz

we got an equation
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There are differential eqs. for E&M only for [&




Solution for Case |

OB IONEERTCTIONER M a total difference = conserved
quantity

el rl.'“lf () —anf(n)=f'(n)+ec

There are two different cases:
or wj




colour gradient
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Casel

with the following recursion all the other cases can be evaluated

le—a)Fla—1,beo z)+(2e—c—az+2)Fla, bo;z)tal z— 1) Fla+1.b;0,2) =0

two examples for negative parameters

o, arcsin/en) e — 1 }
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for non integer/half-integer values an inifinte series comes out



Casel

domain range fithfompact

domain range
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The solution T(x,t)

=1L, x=0.31¢t=01.73




Solution for Case Il
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The regular solution
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The irregular solution

Till now it is not possible to write it in closed form
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Summary and Outlook

we presented various derivations and
interpretation of the telegraph equation

As a new feature we presented a new telegraph-type
equation with self-similar solutions
It has both and hyperbolic properties

further work is in progress to clear out the
and improve physical interpretation



