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Introdution, motivation
T

µ

E

.

.

quark gluon plasma

hadronic phase

• µ = 0 area is relevant for - the early Universe- high energy ollisions
• µRHIC ≈ 50 MeV, µSPS ≈ 250 MeV
• QCD transition at µ = 0 is found to be a rossover[Y. Aoki, GE, Z. Fodor, S.D. Katz, K.K. Szabó℄
• Di�erent observables give di�erent values for Tcnamely, Tc(ψ̄ψ) ≈ 156 MeV, Tc(χs) ≈ 169 MeV[Y. Aoki, Sz. Borsányi, S. Durr, Z. Fodor, S.D. Katz, S. Krieg, K.K. Szabó℄



Role of the urvature
• Explore the µ 6= 0 region of the phase diagram
• At µ 6= 0 sign problem emerges

→ importane sampling not possible
• Possible solutions:- reweighting µ = 0 on�gurations- analyti ontinuation from imaginary µ- use Taylor-expansion in µ, around µ = 0�rst term vanishesseond term given by the urvature (κ)
• Aims:determine the urvature for di�erent observables

ψ̄ψ and χs

• Comparison: Nt = 4 and 6 results; the urvatureis in the range of κ = 0.003 . . .0.01[Bielefeld-Swansea; Philipsen, de Forrand; D'Elia, Lombardo; Fodor, Katz℄



Possible senarios

• Does the rossover region shrink or expand?
• Analyze the width of the transition

→ urvature an give insight
→ reent study indiates a weakening [de Forrand℄
→ non-monotoni behaviour is possible [Kapusta℄

• Does a ritial endpoint exist?
• µ ≡ µB



Curvature determination I.
• Equation of transition line is Tc(µ) = Tc

(

1 − κµ
2

T2
c

)

→ κ = −Tc
dTc(µ)d(µ2)

∣
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∣
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• Determining Tc(µ) would be too expensive
• For an observable Φ(T, µ) whih satis�es:

lim
T→0

Φ(T, µ2) = C0, lim
T→∞

Φ(T, µ2) = C∞ ∀µ

• De�ne a 'transition' temperature TK where
Φ(T )|T=TK

= Kwith C0 < K < C∞

• Set K aording to the in�etion point of Φ(T,0)so TK = Tc(µ = 0)



Curvature determination II.
• For Φ(T, µ2): dΦ = ∂Φ

∂T · dT + ∂Φ
∂µ2 · dµ2

• along the TK(µ) linedΦ = 0 by de�nitiondTcdµ2 =−

(
∂Φ

∂µ2

∣
∣
∣
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︸ ︷︷ ︸

R(T )

• κ(T ) = −Tc ·R(T )

• To leading order eah point of Φ moves −R(T ) ·µ2to the left
• Also, κ(T ) gives urvature of the Φ = onst. urvestarting from T at µ = 0

• Slope of κ(T ) related to width of transition:
1
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Operators for ∂Φ
∂µ2

• Consider Z =
∫

DUe−Sg(U) detMNf/4

• ∂ logZ
∂µu,d

= 〈nu,d〉; ∂2 logZ
∂µ2

u,d
= 〈χu,d〉

nu,d =
Nf
4 Tr (

M−1M ′
) and

χu,d = n2
u,d +

Nf
4 Tr (

M−1M ′′ −M−1M ′M−1M ′
)(′ ≡ ∂

∂µu,d
)

• Observables Φ that don't depend on µu,d (L, χs):
∂〈Φ〉

∂(µ2
u,d)

= 1
2
∂2〈Φ〉

∂µ2
u,d

= 〈Φχu,d〉 − 〈Φ〉〈χu,d〉

• Observables Φ that depend on µu,d (ψ̄ψ, χψ̄ψ):
∂〈Φ〉

∂(µ2
u,d)

= 1
2
∂2〈Φ〉

∂µ2
u,d

= 〈Φχu,d〉 − 〈Φ〉〈χu,d〉 + 〈2Φ′nu,d + Φ′′〉



Observables
• Strange suseptibility χs = T

V
∂2 logZ
∂µ2

sno renormalization neessary, study ombination χs/T2here C0 = 0, C∞ = 1, both µ-independent
• Chiral ondensate ψ̄ψ = T

V
∂ logZ
∂mrenormalization, subtration of SB limit:

ψ̄ψr =
[

(ψ̄ψ − ψ̄ψ(T = 0)) ·m− αm2T2
]

· 1
m4
πhere C0 = 0, C∞ both µ-independent



Simulation details
• Symanzik improved gauge and stout-link improvedstaggered fermioni lattie ation
• Physial masses for mu,d and for ms

• LCP determined by �xing mK/fK and mK/mπ

• Sale set by fK
• Lattie spaings used: Nt = 4,6,8,10(a ≈ 0.3 . . .0.12fm)
• with aspet ratios Ns/Nt = 4 and 3

• Measurements arried out with 80 random vetors(measurements and on�g. prodution balaned)
• Derivatives Φ′ and Φ′′ alulated numeriallyusing a purely imaginary hemial potential



How to extrat results?
• Determine κ(T ) over a temperature-intervalstudy κ(T )|T=Tc → urvature of Tc(µ) linestudy ∂κ

∂T

∣
∣
∣
∣
T=Tc

→ hange in width of transition
• Expand around Tc (t ≡ T−Tc

Tc
):

κ(T ) = κ(Tc) + b1 · t+ b2 · t2

• Fit di�erent a (di�erent Nt) data together:
κ(T ;Nt) = κ(Tc; cont) + b1 · t+ b2 · t2

+ c1/N
2
t + c2 · t/N2

t

• Nt-dependent quadrati term not neessary todesribe data
• Good �t qualities: χ2/d.o.f ≈ 0.8



Results

κ(χs/T2) = 0.0127(11) κ(ψ̄ψr) = 0.0066(19)

1

W

∂W

∂(µ2)

(χs/T2)

= 0.025(19)
1

W

∂W

∂(µ2)

(ψ̄ψr)

= 0.031(18)



Conlusions
• Taylor-expansion in µ to determine the urvature
• Crossover nature of the transition is visible
• In leading order, transition urves of ψ̄ψr and
χs/T2 onverge to eah other- Higher orders? Third observable?

• Both quantities get smoother as µ inreases
• Leading order in µ indiates a weakening of thetransition- no evidene for a ritial endpoint- non-monotoni behaviour?
• Full reweighting is needed to study to existene ofthe ritial point



Illustration



Illustration
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Taken from [Kapusta, de Forrand℄



Illustration

Freezeout urve from [Cleymans, Redlih℄



On the appliability of the method
• Is Φ µ-independent at T = 0 and at T → ∞?
• χs/T2 and ψ̄ψr both ful�ll this, beause:- imaginary µ ≡ boundary ondition, whih isirrelevant at T = 0this independene an be analytially ontinuedto real µ also- µ enters logZ only through the fugaity eµ/T , soat T → ∞ inlusion of a small µ has no e�et
• Φ(Tc) = onst. is a good de�nition for Tc for bothquantities



On the renormalization of ψ̄ψ
• Another usual renormalization is:

∆ℓ =
[

ūu− 2mud
ms

s̄s
] / [(

ūu− 2mud
ms

s̄s
) ∣

∣
∣
T=0

]

- only divergenes proportional to m2
u +m2

s anel- advantage: ∆ℓ goes 1 . . .0 as T ∈ [0,∞)

• ψ̄ψr ontains no divergent terms- to approah �nite limits as T → 0 and T → ∞,the SB ontribution has to be subtrated- the term αm2T2 appears with α = −1/6 (in theontinuum)
→ its subtration does not e�et ψ̄ψr around Tc,where αm2T2/m4

π ∼ O(10−4)


