The QCD phase diagram for small chemical potentials

from lattice simulations

G. Endrődi¹, Z. Fodor^{1,2}, S.D. Katz¹, K.K. Szabó²

¹ Eötvös University, Dept. of Theoretical Physics

² University of Wuppertal, Dept. of Theoretical Physics

RHIC Winter School on Heavy Ion Physics Budapest, 2. December 2009.

Contents

- Introduction, motivation
- Role of the curvature
- A cheap method to determine κ
- Results in the continuum limit
- Conclusions, outlook

Introduction, motivation

- $\mu = 0$ area is relevant for the early Universe - high energy collisions
- $\mu_{RHIC} pprox$ 50 MeV, $\mu_{SPS} pprox$ 250 MeV
- QCD transition at $\mu = 0$ is found to be a crossover [Y. Aoki, GE, Z. Fodor, S.D. Katz, K.K. Szabó]
- Different observables give different values for T_c namely, $T_c(\bar{\psi}\psi) \approx 156$ MeV, $T_c(\chi_s) \approx 169$ MeV [Y. Aoki, Sz. Borsányi, S. Durr, Z. Fodor, S.D. Katz, S. Krieg, K.K. Szabó]

Role of the curvature

- Explore the $\mu \neq 0$ region of the phase diagram
- At $\mu \neq 0$ sign problem emerges \rightarrow importance sampling not possible
- Possible solutions:
 - reweighting $\mu=0$ configurations
 - analytic continuation from imaginary μ
 - use Taylor-expansion in μ , around $\mu = 0$ first term vanishes second term given by the curvature (κ)
- Aims:

determine the curvature for different observables $\bar\psi\psi$ and χ_s

• Comparison: $N_t = 4$ and 6 results; the curvature is in the range of $\kappa = 0.003 \dots 0.01$

[Bielefeld-Swansea; Philipsen, de Forcrand; D'Elia, Lombardo; Fodor, Katz]

Possible scenarios

- Does the crossover region shrink or expand?
- Analyze the width of the transition
 - \rightarrow curvature can give insight
 - \rightarrow recent study indicates a weakening [de Forcrand]
 - \rightarrow non-monotonic behaviour is possible [Kapusta]
- Does a critical endpoint exist?
- $\mu \equiv \mu_B$

Curvature determination I.

• Equation of transition line is $T_c(\mu) = T_c \left(1 - \kappa \frac{\mu^2}{T^2}\right)$

$$\rightarrow \kappa = -T_c \left. \frac{\mathrm{d}T_c(\mu)}{\mathrm{d}(\mu^2)} \right|_{\mu=0}$$

- Determining $T_c(\mu)$ would be too expensive
- For an observable $\Phi(T,\mu)$ which satisfies:

 $\lim_{T \to 0} \Phi(T, \mu^2) = C_0, \quad \lim_{T \to \infty} \Phi(T, \mu^2) = C_\infty \quad \forall \mu$

• Define a 'transition' temperature T_K where

$$\Phi(T)|_{T=T_K} = K$$

with $C_0 < K < C_\infty$

• Set K according to the inflection point of $\Phi(T,0)$ so $T_K = T_c(\mu = 0)$

Curvature determination II.

• For $\Phi(T, \mu^2)$: $d\Phi = \frac{\partial \Phi}{\partial T} \cdot dT + \frac{\partial \Phi}{\partial \mu^2} \cdot d\mu^2$

- To leading order each point of Φ moves $-R(T) \cdot \mu^2$ to the left
- Also, $\kappa(T)$ gives curvature of the $\Phi = \text{const.}$ curve starting from T at $\mu = 0$
- Slope of $\kappa(T)$ related to width of transition:

$$\frac{1}{W}\frac{\partial W}{\partial(\mu^2)} = -\frac{1}{T_c}\frac{\partial\kappa}{\partial T}\Big|_{T=T_c}$$

• Consider $\mathcal{Z} = \int \mathcal{D}U e^{-S_g(U)} \det M^{N_f/4}$

$$\frac{\partial \log \mathcal{Z}}{\partial \mu_{u,d}} = \langle n_{u,d} \rangle; \ \frac{\partial^2 \log \mathcal{Z}}{\partial \mu_{u,d}^2} = \langle \chi_{u,d} \rangle$$

$$n_{u,d} = \frac{N_f}{4} \operatorname{Tr} \left(M^{-1} M' \right) \text{ and }$$

$$\chi_{u,d} = n_{u,d}^2 + \frac{N_f}{4} \operatorname{Tr} \left(M^{-1} M'' - M^{-1} M' M^{-1} M' \right)$$

$$(' \equiv \frac{\partial}{\partial \mu_{u,d}})$$

• Observables Φ that don't depend on $\mu_{u,d}$ (L, χ_s):

$$\frac{\partial \langle \Phi \rangle}{\partial (\mu_{u,d}^2)} = \frac{1}{2} \frac{\partial^2 \langle \Phi \rangle}{\partial \mu_{u,d}^2} = \langle \Phi \chi_{u,d} \rangle - \langle \Phi \rangle \langle \chi_{u,d} \rangle$$

• Observables Φ that depend on $\mu_{u,d}$ $(ar{\psi}\psi, \chi_{ar{\psi}\psi})$:

$$\frac{\partial \langle \Phi \rangle}{\partial (\mu_{u,d}^2)} = \frac{1}{2} \frac{\partial^2 \langle \Phi \rangle}{\partial \mu_{u,d}^2} = \langle \Phi \chi_{u,d} \rangle - \langle \Phi \rangle \langle \chi_{u,d} \rangle + \langle 2\Phi' n_{u,d} + \Phi'' \rangle$$

Observables

• Strange susceptibility $\chi_s = \frac{T}{V} \frac{\partial^2 \log \mathcal{Z}}{\partial \mu_s^2}$

no renormalization necessary, study combination χ_s/T^2 here $C_0 = 0$, $C_{\infty} = 1$, both μ -independent

• Chiral condensate $\bar{\psi}\psi = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial m}$

renormalization, subtraction of SB limit: $\bar{\psi}\psi_r = \left[(\bar{\psi}\psi - \bar{\psi}\psi(T=0)) \cdot m - \alpha m^2 T^2\right] \cdot \frac{1}{m_{\pi}^4}$ here $C_0 = 0$, C_{∞} both μ -independent

Simulation details

- Symanzik improved gauge and stout-link improved staggered fermionic lattice action
- Physical masses for $m_{u,d}$ and for m_s
- LCP determined by fixing m_K/f_K and m_K/m_π
- Scale set by f_K
- Lattice spacings used: $N_t = 4, 6, 8, 10$ ($a \approx 0.3 \dots 0.12$ fm)
- with aspect ratios $N_s/N_t = 4$ and 3
- Measurements carried out with 80 random vectors (measurements and config. production balanced)
- Derivatives Φ' and Φ'' calculated numerically using a purely imaginary chemical potential

How to extract results?

• Determine $\kappa(T)$ over a temperature-interval study $\kappa(T)|_{T=T_c} \rightarrow \text{curvature of } T_c(\mu)$ line study $\frac{\partial \kappa}{\partial T}\Big|_{T=T_c} \rightarrow \text{change in width of transition}$

• Expand around T_c $(t \equiv \frac{T - T_c}{T_c})$:

$$\kappa(T) = \kappa(T_c) + b_1 \cdot t + b_2 \cdot t^2$$

• Fit different a (different N_t) data together:

$$\kappa(T; N_t) = \kappa(T_c; \text{cont}) + b_1 \cdot t + b_2 \cdot t^2$$
$$+ c_1/N_t^2 + c_2 \cdot t/N_t^2$$

- N_t-dependent quadratic term not necessary to describe data
- Good fit qualities: $\chi^2/d.o.f \approx 0.8$

Results

Conclusions

- Taylor-expansion in μ to determine the curvature
- Crossover nature of the transition is visible
- In leading order, transition curves of $\bar{\psi}\psi_r$ and χ_s/T^2 converge to each other
 - Higher orders? Third observable?
- Both quantities get smoother as μ increases
- Leading order in μ indicates a weakening of the transition
 - no evidence for a critical endpoint
 - non-monotonic behaviour?
- Full reweighting is needed to study to existence of the critical point

Illustration

Illustration

Freezeout curve from [Cleymans, Redlich]

On the applicability of the method

- Is Φ μ -independent at T = 0 and at $T \to \infty$?
- χ_s/T^2 and $\bar{\psi}\psi_r$ both fulfill this, because:
 - imaginary $\mu \equiv$ boundary condition, which is irrelevant at T = 0 this independence can be analytically continued to real μ also
 - μ enters log \mathcal{Z} only through the fugacity $e^{\mu/T}$, so at $T \to \infty$ inclusion of a small μ has no effect
- $\Phi(T_c) = \text{const.}$ is a good definition for T_c for both quantities

On the renormalization of $\bar{\psi}\psi$

• Another usual renormalization is:

$$\Delta_{\ell} = \left[\bar{u}u - \frac{2m_{ud}}{m_s} \bar{s}s \right] \left/ \left[\left(\bar{u}u - \frac{2m_{ud}}{m_s} \bar{s}s \right) \Big|_{T=0} \right] \right.$$

- only divergences proportional to $m_u^2 + m_s^2$ cancel
- advantage: Δ_ℓ goes 1...0 as $T \in [0,\infty)$
- $\bar{\psi}\psi_r$ contains no divergent terms
 - to approach finite limits as $T \to 0$ and $T \to \infty$, the SB contribution has to be subtracted
 - the term $\alpha m^2 T^2$ appears with $\alpha = -1/6$ (in the continuum)
 - \rightarrow its subtraction does not effect $\bar\psi\psi_r$ around T_c , where $\alpha m^2T^2/m_\pi^4\sim \mathcal{O}(10^{-4})$