Zimányi School 2009

Next Generation Neutron Sources

F. Mezei

Budapest Neutron Center, Hungary and

Los Alamos National Laboratory

Topics

- What means "next generation"?
- Can it readily be done?
- How?
- What are the advantages?
- And disadvantages?
- Perspectives

Topics

- What means "next generation"?
- Can it readily be done?
- How?
- What are the advantages?
- And disadvantages?
- Perspectives

Ways to produce neutrons

Energy balance decisive for condensed matter research: fast neutrons produced / joule energy (heat produced / energy consumed)

Fission reactors: $\sim 10^9$ (in ~ 50 liter volume)

Spallation: $\sim 10^{10}$ (in ~ 1 liter volume)

Fusion: $\sim 2x10^{10}$ (in huge volume)

Photo neutrons: $\sim 10^9$ (in ~ 0.01 liter volume)

Nuclear reaction (p, Be): $\sim 10^8$ (in ~ 0.001 liter volume)

Laser induced fusion: $\sim 10^4$ (in $\sim 10^{-9}$ liter volume)

Spallation: most favourable for foreseeable future! Forget fusion!

One amazing example: table top neutron source

Nanoaccelerator by ultrashort, focussed laser pulse on 20 μ D₂O droplet: relativistic light intensities. Field-strength: 1 MV/μm
 10¹⁹ W/cm² power → plasma → deuterons accelerated to MeV → fusion!
 Distribution of neutrons reveals plasma formation mechanism
 Laser driven μ-size source of (fast) neutrons (~10⁴ neutron/ ~ 0.5 j pulse)

d + D => 3He (0.82 MeV) + n (2.45 MeV): Neutron – spectroscopy

Efficiency gain by pulsed sources

Part of spectrum used by a D22 (ILL) class instrument

Linear accelerators alone can do the same in \sim 100 μ s pulses:

~ 60 % of accelerator parts and complexity removed → simpler, cheaper

What is the longest acceptable pulse length?

- Irradiation work: ∞
- Single (Q,ω) experiments (D3, TAS?): ∞
- SANS, NSE: 2 4 ms
- Reflectometry: 0.5 2 ms
- Single Xtal diffraction: 100 500 μs
- Powder diffraction: 5 500 μs
- Cold neutron spectroscopy: 50 2000 μs
- Thermal neutron spectroscopy: 20 600 μs
- Hot neutron spectroscopy: $10 300 \mu s$
- Electronvolt spectroscopy: 1 10 μs
- Backscattering spectroscopy: 10 100 μs, ...

Rough estimate: $t_{min}/T \sim \delta \lambda / \lambda$

What is the longest acceptable pulse length?

Longer pulses ⇒ more neutrons but more power

- Irradiation work: ∞
- Single (Q,ω) experiments (D3, TAS?): ∞
- SANS, NSE: 2 4 ms
- Reflectometry: 0.5 2 ms
- Single Xtal diffraction: 100 500 μs
- Powder diffraction: 5 500 μs
- Cold neutron spectroscopy: 50 2000 μs
- Thermal neutron spectroscopy: 20 600 μs
- Hot neutron spectroscopy: $10 300 \mu s$
- Electronvolt spectroscopy: 1 10 μs
- Backscattering spectroscopy: 10 100 μs, ...

Rough estimate: $t_{min}/T \sim \delta \lambda / \lambda$

"Long" proton pulses using linear accelerators:

 Longer pulses (ms) also provide higher peak flux at comparable costs and technical complexity

Example:

450 kj/pulse long pulses (350 MW inst.) vs. 23 kj/pulse short pulse (15 GW inst.: SNS)

1500

"Long" proton pulses using linear accelerators:

 Longer pulses (ms) also provide higher peak flux at comparable costs and technical complexity

Example:

450 kj/pulse long pulses (350 MW inst.) vs. 23 kj/pulse short pulse (15 GW inst.: SNS)

"Long" proton pulses using linear accelerators:

 Longer pulses (ms) also provide higher peak flux at comparable costs and technical complexity

Example:

450 kj/pulse long pulses (350 MW inst.) vs. 23 kj/pulse short pulse (15 GW inst.: SNS)

Compromise: 2 ms pulses for 5 MW power in ~20 Hz

ESFRI: need for "top tier" neutron source for Europe: ESS

ESS will be the world's most powerful source of neutrons. Its built-in upgradeability (more than the initial 20 instruments, more power, more target stations) makes it the most cost-effective top tier source for 40 years or more. A genuine pan-European facility, it will serve 4,000 users annually across many areas of science and technology.

Neutron research in Europe:

~4000 scientists, 11 facilities (and decreasing): ~ 330 M€/a

ESS:

• Affordable costs for 10 % share of use with 22 instruments: 165 – 193 M€ investment + operations (1.1.2008 value) spread over 2009-2025

- Established technologies used in innovative way: low technological risks
- More neutrons for less energy
 ILL: ~ 70 MW, ESS: ~ 30 M
- Upgrade potentials: 2 3 x

Topics

- What means "next generation"?
- Can it readily be done?
- How?
- What are the advantages?
- And disadvantages?
- Perspectives

Technical preconditions, enabling technologies:

Advanced neutron guides (low loss at any L for λ>1 Å), Repetition Rate Multiplication for TOF Spectroscopy: to allow "reasonable" repetition rates both in diffraction (elastic scattering) and TOF spectroscopy (inelastic scattering) at the same time

Technical preconditions, enabling technologies:

Advanced neutron guides (low loss at any L for λ>1 Å), Repetition Rate Multiplication for TOF Spectroscopy Pulse shaping: to allow to choose the best pulse length for each application

Pulse shaping technique for diffraction and inverted geometry spectroscopy at long pulse sources

Multiplexing chopper system (with phase slewing to source)

Pulse shaping technique for diffraction and inverted geometry spectroscopy at long pulse sources

First example: DNA – J-PARC (backscattering sptrm.)

Technical preconditions, enabling technologies:

Advanced, supermirror based neutron optical beam delivery, including large distances (~100 m)

Technical preconditions, enabling technologies:

Advanced, supermirror based neutron optical beam delivery

Multi-spectral beam extraction:

(Mezei, Russina, Patent, Berlin, 23.01.2002)

Topics

- What means "next generation"?
- Can it readily be done?
- How?
- What are the advantages?
- And disadvantages?
- Perspectives

Huge gain in useful neutron intensity: polarization affordable

Example: reflectometer (~15 m)

 $\delta \lambda / \lambda \sim 5$ % at 4 Å

Huge gain in useful neutron intensity: polarization affordable Example: reflectometer (~15 m)

 $\delta \lambda / \lambda \sim 5$ % at 4 Å

Useful beam intensity:

peak / excessive
resolution / line shape
factor

Huge gain in useful neutron intensity: polarization affordable Example: reflectometer (~15 m)

 $\delta \lambda / \lambda \sim 5$ % at 4 Å

Source figure-of-merit (F): peak brilliance, if the well shaped pulses are long enough to avoid excessive resolution

New capability for pulse sources: extreme and variable resolution, much better efficiency

E.g. powder diffraction (simulated data)

Topics

- What means "next generation"?
- Can it readily be done?
- How?
- What are the advantages?
- And disadvantages?
- Perspectives

Source figure-of-merit (F): time average flux, if only one point in (Q, ω) space is of interest (e.g. polarization analysis in single crystals, CRYOPAD,...)

Hot neutron moderator at multi MW spallation source:

time average flux approaches reactors + some fringe benefits from pulsed structure

comparison of fully-coupled flux-trap moderators H₂O and graphite (2000 K)

Neutronics calculations by G. Russell (cf. poster)

Topics

- What means "next generation"?
- Can it readily be done?
- How?
- What are the advantages?
- And disadvantages?
- Perspectives

Up to another order of magnitude in the cards

Next generation, optimized spallation sources open up a cost effective way to vastly enhanced research opportunities at.

ESS SAC workshop, 0ct 2002 for ESFRI report