for $\sigma_{t\bar{t}}$ at 10 TeV pp collisions at ATLAS

B.Radics (on behalf of the ATLAS collaboration) University of Bonn

AS Experiment at the CERN Large Hadron Collider

- <u>Goal</u>: Estimate uncertainty on a top pair production cross section at 10 TeV proton-proton collisions for 200 pb⁻¹ at ATLAS
- Major backgrounds: W+jets and QCD
- <u>Problem</u>: predictions on W+N jets (N >= 4) has large uncertainty
- Fortunately: W+jets/Z+jets ratio is predicted with much smaller uncertainty and Z+jets events can be selected from data with high purity
- <u>Bonus</u>: Taking ratios of jet multiplicites partially cancels uncertainties

Z+jets background:

$$\sigma_{W \to e\nu+0p}^{LO} = 10188$$

$$\sigma_{W \to e\nu+1p}^{LO} = 2112$$

$$\sigma_{W \to e\nu+2p}^{LO} = 676$$

$$\sigma_{W \to e\nu+3p}^{LO} = 203$$

$$\sigma_{W \to e\nu+4p}^{LO} = 56$$

$$\sigma_{W \to e\nu+5p}^{LO} = 16$$

selection:

igger: single lepton with p_T > 15 GeV actly 1 lepton with p_T > 20 GeV ssing E_T > 20 GeV

- least 4 jets with p_T > 20 GeV
- which at least 3 jets have p_T > 40 GeV

Numbers of Selected Events					
mple	Electron	n Analysis	Muon Analysis		
	default	+Mw-cut	default	+Mw-cut	
	2600	1286	3144	1584	
+jets	1305	448	1766	628	
igle top	210	81	227	98	
→ ll +jets	148	43	144	49	
dronic tī	16	10	11	5	
bb	21	7	32	10	
W	11	6	14	7	
Z	3	1	5	2	
2	0.4	0.2	0.5	0.2	
gnal	2600	1286	3144	1584	
ckground	1715	598	2199	799	
-	1.0			0.0	

Cut and count method:

$$\boldsymbol{\sigma} = \frac{N_{\text{sig}}}{\mathscr{L} \times \boldsymbol{\varepsilon}} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{\mathscr{L} \times \boldsymbol{\varepsilon}}$$

W+jets background: data di QCD background: data driv

tor W and Z + n jets

production in W, Z events at p colliders

, W. T. Giele, H. Kuijf, R. Kleiss, W. J. Stirling

production in W, Z events at p colliders

, W. T. Giele, H. Kuijf, R. Kleiss, W. J. Stirling

rs B,Volume 224, Issues 1-2, 22 June 1989, Pages 237-242

$$(\mathbf{W}^{\mathrm{SR}}/\mathbf{W}^{\mathrm{CR}})_{\mathrm{data}} = (\mathbf{Z}^{\mathrm{SR}}/\mathbf{Z}^{\mathrm{CR}})_{\mathrm{data}} \cdot C_{\mathrm{MC}}, \qquad C_{\mathrm{MC}} = \frac{(\mathbf{W}^{\mathrm{SR}}/\mathbf{W}^{\mathrm{CR}})_{\mathrm{MC}}}{(\mathbf{Z}^{\mathrm{SR}}/\mathbf{Z}^{\mathrm{CR}})_{\mathrm{MC}}}$$

control kegion

- trigger: single electron (muon) p_T > 15 GeV
- exactly 1 offline reconstructed electron (muon)
- veto on any reconstructed muon (electron)
- missing E_T > 20 GeV
- CR: 1 jet p_T > 20 GeV, SR: >= 4 jets, 3 jets p_T > 40 GeV

Process	$W \rightarrow ev$	$W \rightarrow \mu \nu$
W(ev)	148700 ± 600	0.0
$W(\mu\nu)$	43±8	190300 ± 600
$W(\tau v)$	5570 ± 110	6820 ± 110
Z(ee)	1197 ± 39	0.0
$Z(\mu\mu)$	1.0 ± 0.4	8066 ± 200
Z(au au)	879 ± 25	1130 ± 30
tī	203 ± 6	241 ± 4
single top	272 ± 10	308 ± 10
Wbb	97±3	119 ± 3
Diboson	427 ± 11	557 ± 2
QCD	42000 ± 4000	31000 ± 15500

control kegion and Signal Kegion

trigger: single electron (muon) p_T > 15 GeV

exactly 2 offline reconstructed electrons (muons) with opposite charge, and invariant mass between 80 and 100 GeV

CR: 1 jet p_T > 20 GeV, SR: >= 4 jets, 3 jets p_T > 40 GeV

	Z→	ee	$Z \rightarrow \mu \mu$		
Process	+ 1 jet	signal-like	+ 1 jet	signal-like	
Z(ee)	10210 ± 90	82±3	0.0	0.0	
Ζ(μμ)	0.0	0.0	15750 ± 270	150 ± 8	
$Z(\tau\tau)$	0.1 ± 0.1	0.1 ± 0.1	0.9 ± 0.9	0.0	
W	6.0 ± 1.5	0.0	0.0	0.0	
tī	8.4±1.1	2.8 ± 0.6	10.5 ± 0.9	5.0 ± 0.7	
single top	2.9 ± 1.4	0.0	2.3 ± 0.8	0.0	
Wbb	0.0	0.0	0.0	0.0	
Diboson	24.9 ± 1.9	0.5 ± 0.3	40.0 ± 2.4	1.0 ± 0.4	
QCD	110 ± 80	0.4 ± 0.4	< 50.0	< 0.5	

event selection: 21->eej+jets, Signal Kegion

Ratio of W to Z jet multiplicites

V

$$(W^{SR}/W^{CR})_{data} = (Z^{SR}/Z^{CR})_{data} \cdot C_{MC}, \qquad C_{MC} = \frac{(W^{SR}/W^{CR})_{MC}}{(Z^{SR}/Z^{CR})_{MC}}$$

	Electron analysis	Muon analysis
Statistical for 200 pb ⁻¹	11.3%	8.3%
Purity of control samples	17.0%	12.7%
Monte Carlo correction factor	12.1%	12.1%
JES (±10%)	3.6%	2.3%
JES (±5%)	3.0%	0.7%
Lepton energy scale	0.4%	0.7%
total error	23.9%	19.6%

Statistical uncertainty: Z candidates in signal region

Purity of control samples: assumption of 50% uncertainty on QCD

this dominates, and was extracted from Monte Carlo with limited statistics (multijet production cross section sets a limit)

trigger: single electron (muon) p_T > 15 GeV

exactly 1 offline reconstructed electron (muon)

veto on any reconstructed muon (electron)

missing E_T > 20 GeV

SR: >= 4 jets, 3 jets p_T > 40 GeV

Muon analysis						
Sample	10TeV (200 pb ⁻¹)			14TeV (100 pb ⁻¹)		
	default	+M _W cut	$+m_t$ cut	default	+M _W cut	$+m_t$ cut
ttbar	3144 ± 17	1584 ± 12	712 ± 8	3274	1606	755
W+jets	1766 ± 44	628 ± 27	148 ± 13	1052	319	98
single top	227 ± 9	98 ± 6	33 ± 4	227	99	25
$Z \rightarrow ll$ +jets	144 ± 4	49 ± 2	13 ± 1	84	23	3
hadronic tī	11 ± 2	5 ± 1	2 ± 1	35	17	7
W bb	32 ± 2	10 ± 1	3 ± 1	64	19	4
W cc				26	9	3
ww	14 ± 2	7 ± 1	2 ± 1	7	3	0.7
WZ	5 ± 1	2 ± 1	0.2 ± 0.2	7	3	0.8
77	0.5 ± 0.1	0.2 ± 0.1	01 ± 0.0	0.7	0.3	0.1

measurement

	Cut and Count method				Fit method	
Source	e-analysis		μ -analysis		e-analysis	µ-analysis
	default	+M _W cut	default	+M _W cut	+M _W cut	+M _W cut
	(%)	(%)	(%)	(%)	(%)	(%)
Stat.	± 2.5	± 3.4	±2.3	±3.1	± 14.1	± 15.2
Lepton ID eff.	±1.0	±1.0	± 1.0	±1.0	\pm 1.0	± 1.0
Lepton trig. eff.	± 1.0	± 1.0	±1.0	±1.0	\pm 1.0	\pm 1.0
50% W+jets	±25.1	±17.4	± 28.1	±19.8	± 3.3	± 5.6
20% W+jets	±10.0	±7.0	± 11.2	±7.9	\pm 1.5	\pm 2.6
JES (10%,-10%)	+24.8-23.4	+15.9-19.1	+20.5-22.3	+11.9-17.9	-14.4	-15.4
JES (5%,-5%)	+12.3-11.9	+8.6-9.3	+10.4-10.9	+6.1-8.4	-3.7	-3.9
PDFs	±1.6	\pm 1.9	±1.2	± 1.4	\pm 1.9	± 1.4
ISR/FSR	+9.1-9.1	+7.6-8.2	+8.2-8.2	+5.2-8.3	-12.9	-12.9
Signal MC	±3.3	±4.4	±0.3	±2.8	\pm 4.5	\pm 1.4
Back. Uncertainty	±0.6	±0.4	± 0.5	±0.4	-	-
Fitting Model	-	-	-	-	\pm 3.3	\pm 4.7
10% Lumi.	±11.6	±11.2	±11.4	± 11.1	± 10	± 10
20% Lumi.	±23.2	±22.3	± 22.8	±22.2	± 20	± 20
Tot. without Lumi.	+18.8-18.5	+14.4-15.2	+17.5-17.7	+11.9-14.7	+6.4 -14.9	+6.0 - 14.7

ElectronCutandcount
$$\frac{\Delta\sigma}{\sigma} = (3.4(\text{stat})^{+14.4}_{-15.2}(\text{syst}) \pm 22.3(\text{lumi}))\%$$

Summary

- Estimation of uncertainty of σ_{tt} @ 10 TeV
- Data-driven W+jets background estimation in signal region
- Ratios of jet mutliplicities cancel many uncertainties
- <u>Major stat. uncertainty</u>: number of Z events in signal region...
- Major systematics I.: QCD multiparton (light/heavy) production
- <u>Major systematics II.</u>: Monte Carlo predictions for W/Z ratio
 - compare with other Monte Carlo predictions (Pythia, Sherpa)
 - vary Monte Carlo parameters (being done for Alpgen)
- <u>ATLAS Public note:</u>
 <u>http://cdsweb.cern.ch/record/1200436/files/ATL-PHYS-PUB-2009-087.pdf</u>

Backup slides

Object definition

ctrons:

calorimeter clusters and inner detector tracks

identification: combined likelihood discriminants (shower shape, deposited energy in EMCal and HCal separate compartments, etc.)

```
p_T > 20 GeV, \eta < 2.47, exclude \eta=[1.37-1.52]
```

s seeded Cone algorithm, R=0.4, H1 calibration, p_ > 20 GeV, η <

<u>ons</u>:

combined muon spectrometer and inner detector tracks, possible correction for Calorimeter energy loss

 p_T > 20 GeV, η < 2.5

ssing E₁: Standard missing transverse energy reconstruction (sum of Insverse energies of all EM/Hadron Calorimeter activities + muons) Th additional corrections from offline reconstructed objects

