Atomic collisions using slow antiprotons in ASACUSA at CERN

Károly Tőkési

Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI) H--4001 Debrecen, P.O.Box 51, Hungary

Co-workers

Experiment

H. Knudsen^a, H.-P.E. Kristiansen^a, H.D. Thomsen^a, U.I. Uggerhřj^a, T. Ichioka^a,1, S.P. Mřller^b, C.A. Hunniford^c, R.W. McCullough^c, M. Charlton^d, N. Kuroda^e, Y. Nagata^e, H.A. Torii^e, Y. Yamazaki^{e,f}, H. Imao^f, H.H. Andersen^g

^a Department of Physics and Astronomy, University of Aarhus, Ny Munkegade Building 1520, 8000 Aarhus C, Denmark

- ^b Institute for Storage Ring Facilities, University of Aarhus, Denmark
- ^c Department of Physics and Astronomy, Queens University, Belfast, UK
- ^d Department of Physics, University of Swansea, UK
- ^e Institute of Physics, Komaba, University of Tokyo, Japan
- ^f Atomic Physics Laboratory, RIKEN, Saitama, Japan
- ^g Niels Bohr Institute, University of Copenhagen, Denmark

Theory

J. Wang

Department of Physics, University of Massachusetts Dartmouth, North Dartm outh, MA 02747, USA L. Gulvás

Institute of Nuclear Research of the Hungarian Academy of Science (ATOMKI), Debrecen, Hungary S. Borbély

Faculty of Physics, Babes-Bolyai University, str. Kogalniceanu nr. 1, 400084 Cluj-Napoca, Romania S. Nagele, J. Feist, J. S. Nagele, J. Feist, Burgdörfer

Institute for Theoretical Physics, Vienna University of Technology, A1040 Vienna Austria, EU

Outlook

- Why? antimatter factory-> new energy source – test of various theories
 - Experiment-Theorytime-of-flightCC, CDW, CTMC
- Past Single ionization of He Single and double ionization of Ar
- Present Ionization of H and H₂
- Future

Differential cross sections – anti-cusp

Summary, Conclusions

Dynamic systems with more than one electron

Advantages with antiprotons:

Antiprotons do not capture electrons (one center problem, essentially) Antiprotons follow a classical path (classical orbital approximation) Very slow antiprotons can still ionize ("adiabatic" collisions can be investigated)

- Antiprotons can give benchmark data

Antiproton Radiotherapy – application of antiprotons??

Reaction Channels

Ionization of noble gas atoms in **slow** antiproton collisions

Past

"Ionization of Helium and Argon by Very Slow Antiproton Impact" Knudsen et al Phys. Rev. Letters 101 (2008)

"On the double ionization of helium by very slow antiproton impact" Knudsen et al NIMB 267 244 (2009)

Experimental setup

AIA

TOF SPECTRA

channels

Ionization of helium atoms in slow antiproton collisions

Single Ionization of helium atoms in slow antiproton collisions THEORY in the year 2009

Single ionization of Helium by antiproton impact

Double Ionization of helium atoms in slow antiproton collisions

Double Ionization of helium atoms in slow antiproton collisions

Double Ionization of He by Antiproton Impact

Double Ionization of helium atoms in slow antiproton collisions

Single ionization of argon atoms in slow antiproton collisions

Double ionization of argon atoms in slow antiproton collisions

E [keV]

Ionization of argon atoms in slow antiproton collisions

Ionization of argon atoms in slow antiproton collisions

Argon target

Present

Ionization of H and H₂

Future/Theory

The special case of target ionization

Total cross sections

Angular differential electron emission cross sections

Double differential electron emission cross sections E=50 keV

CTMC

CDW-EIS

Antiproton

$$E = 4\frac{m}{M}E_p \cos^2\theta$$

proton

Double differential electron emission cross sections 100 keV

Energy distributions at 0 degree

50 keV pbar + He

100 keV pbar + He

Future/Experiment

PBAR RECYCLER

PBAR COLLIMATION

Aarhus University Circumference 7.6 m

ELISA

Electrostatic storage ring

From protons to biomolecules

Highest storage energy 22 keV Average pressure <10⁻¹¹ mBar Storage time tens of s up to minutes

Is it necessary to detect the antiprotons?

It should be possible to get *some* information about the triple differential cross section by detecting the emitted electron and the emitted ion.

Also, remember that the pbar, deflected after ionization can be detected by their emitted pions

Pbar beam focusing Capillary with conical shape

Conclusions

- we have obtained experimental benchmark data for the development of advanced models and calculations of atomic collisions in general and for ionization
- we found upper limits to the low energy double ionization cross section and to the ratio between double and single ionization cross sections.

TO BE CONTINUED

Thank you!