Charm reconstruction with HFT for STAR

Michal Tesař

NPI ASCR

FNSPE CTU in Prague

Zimányi Winter School 2009 11/30/2009

Michal Tesař (NPI ASCR)

Zimányi Winter School 2009 1 / 16

The new detector Heavy Flavor Tracker (HFT) for STAR:

- will improve measurements with heavy flavor hadrons for low p_T
- uses technology of CMOS MAPS
- main purpose: carry out systematic study of QGP

Our work:

- investigate simulated data
- survey capabilities of the new design to reconstruct D⁺ mesons
- our goal: maximize D⁺ signal significance

< ロ > < 同 > < 回 > < 回 >

Physical motivation

Heavy quarks in ultrarelativistic heavy-ion collisions:

- are produced in early stages of the collision
- in later stages of the QGP their amount is not modified
- ⇒ heavy flavor hadrons carry the information about the initial phase

Heavy quarks in ultrarelativistic heavy-ion collisions:

- are produced in early stages of the collision
- in later stages of the QGP their amount is not modified
- ⇒ heavy flavor hadrons carry the information about the initial phase

Important topics to study:

- high p_T hadrons suppression and jet quenching (R_{AA})
- collective expansion and fireball thermalization (v₂)

< ロ > < 同 > < 回 > < 回 >

Heavy quarks in ultrarelativistic heavy-ion collisions:

- are produced in early stages of the collision
- in later stages of the QGP their amount is not modified
- ⇒ heavy flavor hadrons carry the information about the initial phase

Important topics to study:

- high p_T hadrons suppression and jet quenching (R_{AA})
- collective expansion and fireball thermalization (v_2)

The goal:

- improve precision of the measurement these quantities
- \Rightarrow do the direct topological reconstruction of heavy flavor hadrons.

The STAR detector

イロト イヨト イヨト イヨト

Two detector subsystems of the HFT:

- PIXEL, low mass MAPS, (2 layers, $r_1 = 2.5$ cm, $r_2 = 8$ cm)
- Intermediate Silicon Tracker (IST), fast one-sided strip detector,
 (1 layer, r = 14 cm)

Other detectors of the STAR tracking system:

- Silicon Strip Detector (SSD), (1 layer, r = 23 cm)
- Time Projection Chamber (TPC)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Detector design

Geometry of STAR silicon detectors

Michal Tesař (NPI ASCR)

Charm reconstruction with HFT for STAR Zimányi Winter School 2009 6 / 16

イロト イヨト イヨト イヨト

The data set

Properties of the simulated data

- 10 000 events
- collisions Au + Au at $\sqrt{s_{\rm NN}} =$ 200 GeV (HIJING)
- 5 embedded D^+ with uniform p_T spectra in each event
- new STAR geometry with the HFT (STAR with HFT upgrade)

D⁺ properties

- D⁺ rest mass is 1869 MeV/c²
- decay channel $D^+ \rightarrow K^- + \pi^+ + \pi^+$
- B.R. = 9.51 %
- $c\tau = 312 \ \mu m$

D⁺ decay and explanation of cut quantities

A (10) > A (10) > A (10)

- $\bullet\,$ survey of all possible triplets $K^-\pi^+\pi^+$
- for reduction of number of triplets we use these requirements:

Used cuts

- invariant mass ϵ (1819; 1919) MeV/c²
- global DCA > 100 μ m
- DCA_{V0}/resolution < 2</p>
- cosθ > 0.99
- vertex Z position ± 5 cm
- 2 reconstucted hits in PIXEL, \geq 15 in TPC

Control plots

Histograms p_T vs. φ

Monte Carlo data

Reconstructed data

Charm reconstruction with HFT for STAR Zimányi Winter School 2009 10 / 16

Reconstruction efficiency

D⁺ decay daughters

Requirements

● |η| < 1</p>

 correctly associated hits in both PIXEL layers

• \geq 15 hits in TPC

Reconstruction efficiency

 D^+

< 47 ▶

Cut optimization

Fixed cuts

- 1854 < M_{inv} < 1884 MeV/c²
- DCA_{V0}/resol. < 2
- good PID (i.e. $p_{T\pi K} < 1.6 \text{ GeV/c}$)

Tuned cuts

- 100 < gDCA < 235 μm
- $0.990 < \cos\theta < 0.999$
- for 0.0 < p_T < 0.5 GeV/c we get too low signal (10 k events)
- charm reconstruction for $p_T < 2$ GeV/c in unique for STAR HFT upgrade

13/16

Michal Tesař (NPI ASCR)

Charm reconstruction with HFT for STAR

Zimányi Winter School 2009 14 / 16

Expected D⁺ signal for 100M central Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Michal Tesař (NPI ASCR)

Charm reconstruction with HFT for STAR Zimányi Winter School 2009

2009 15/16

Summary and Conclusions

- HFT uses low mass MAPS and fast strip detectors
- HFT will extend STAR capabilities to measure:
 - partonic energy loss
 - charm collectivity
 - baryon/meson ratios
- ⇒ systematic study of QGP at RHIC-II

p _T [GeV/c]	signal significance
0.5 - 1.0	16
1.0 - 1.5	42
1.5 - 2.0	23

The results for 100M central Au+Au collisions

A (10) + A (10) +