Rethinki
manage

Xavier Valls

Ng thread pool

Ten

tin ROOT


https://root.cern

urrent functionality of TPoolManager

» A ROOQOT:Internal singleton that, once it's been initialized, pins the
number of threads to use for any (TBB-based) multithreaded application
in ROOT.

> Also acts as a lifetime manager for the TBB scheduler, destroying the
instance when not in use (when the shared_ptr to the TBB task scheduler
becomes unowned). Once destroyed, can be initialized with a different
number of threads.

> Solves undefined behaviours caused by the interaction of the implicit and
explicit multithreading modes in ROOT. (PPP_meeting 9-Feb-2017)



https://indico.cern.ch/event/607814/contributions/2466931/attachments/1409778/2155811/TScheduler.pdf

Current functionality

//We initialize the scheduler with 4 threads
ROOT: :EnableIMT(4);

{
//The scheduler is active, so the value passed to TThreadExecutor
//is overriden with the number of threads the scheduler has been
//initialized with (4)
TThreadExecutor executor(9);

}

ROOT: :DisableIMT();

//The scheduler is not alive at this point,
//so we initialize it with 2 threads

ROOT: :Enab1eIMT(2);

ROOT: : TThreadExecutor executor(8);

ROOT: :DisableIMT();

executor.MapReduce(...); //Runs on two threads!

ROOT: :Enab1eIMT(3);
//Still two threads! TThreadExecutor instance was keeping the scheduler alive



Current functionality

ROOT: : TThreadExecutor executor(4);
ROOT: : TThreadExecutor executor2(8); //will run limited to two threads!!



>

Doesn’t solve dependencies between the implicit and explicit
multithreading modes.

Unexpected behaviour in the eyes of the user. Why does IMT affect EMT?
Why can't | have several instances of EMT classes with differing number
of threads? “It's in the documentation” not enough.

Uninformed usage of pool size getters. “But it works!” doesn’'t make it
correct.



Objectives

» Decoupling the implicit and explicit multithreading executions modes in
ROOT

» In EMT, allow the instantiation of MT classes managing a different
number of threads.

» Keep current functionality of IMT



Working with a tbb::task_arena we create on top of the implicit one
returned by tbb::task_scheduler_init



Proposed changes

» TPoolManager is still the life manager of the TBB task scheduler, but
always initializes to the max number of threads in the system.

» IMT, TThreadExecutor save the number of threads they have been
initialized with.

» TThreadExecutor handles tbb::task_arenas instead of directly the
task_scheduler.

» If IMT enabled, the default constructor of TThreadExecutor is built with
the number of threads defined by IMT.



New behaviour

//Each of the executor manages its own tbb::task_arena,
//which allows the co-existance of TThreadExecutors
//handling different number of threads.
TThreadExecutor executorl(8); //will run on 8 threads
TThreadExecutor executor2(4); //will run on 4 threads

//IMT keeps a different task Arena too!

ROOT: :EnableIMT(4); //4 threads will be used in IMT operations

//executor3 will be initialized with 4 threads for backward

//compatibility. Should we not allow this interaction?

//Should it be initialized with the default number of threads?
TThreadExecutor executor3; //Implicit constructor. Initialized with 4 threads.

ROOT

ROOT
ROOT

ROOT

ROOT

::DisableIMT();

::EnableIMT(2);

//2 threads will be used in IMT operations

: :TThreadExecutor executor(8); //Explicit number of threads.

::EnableIMT(4);

::DisableIMT();

// Will execute on 8 threads.
//2 threads will be used in IMT operations
//Doesn't change until disabled!
//Should we allow it instead?



New Behaviour

//TThreadExecutor holds a shared_ptr to the tbb::task_scheduler
TThreadExecutor executorl(8); //will run on 8 threads

}

//executorl went out of scope and was destroyed together with the scheduler.
//No scheduler active at this point.

ROOT: :EnableIMT(4);

//"IMT" holds holds a shared_ptr to the tbb::task_scheduler. Scheduler alive here.

// DisableIMT() will destroy the IMT reference to the scheduler. The reference count of
// the scheduler reaches zero and it gets destroyed.

ROOT: :DisableIMT();

ROOT: :EnableIMT(4);
TThreadExecutor executor3; //Implicit constructor. Initialized with 4 threads.
ROOT: :DisableIMT();

//The scheduler is still alive here because of executor3



PR #2389

https://github.com/root-project/root/pull/2389



Decisions to take

» Decide on explicit-implicit MT execution modes' interactions. Should
TThreadExecutor totally independent of IMT?

> Allow EnablelmplicitMT to change number of threads without disabling?

» Rename TPoolManager (not exposed to the user anymore)






