Survey and Alignment -Automation Possibilities

Mark JONES, CERN
Alignment
Motivation

- Frequency of re-alignments
 - Millimetric movements in initial years (10 y?)
 - Movements may continue in some areas
- Access to the Accelerator
 - YETS: 12 weeks
 - Technical Stops: 1 week?
 - Re-alignment time?
Position and Orientation Determination

- Accelerator elements in the **Arcs**
 - FCC-ee ~11500 (81 km)
 - Booster Ring ~9500 (84 km)
 \[\sim 21000 \]
- Element Position and Orientation Determination
 - 3D Measurement of at least 2 Reference Pts + Roll angle
- Measurements 6 h / day
- ElemPOD / min
 \[= \frac{\text{NumElem}}{(\text{measDays} \times (\text{mins/day}))} \]
 \[= \frac{21000}{(\text{measDays} \times (6\times60))} = \sim 60 / \text{measDays} \]
Available Time

• FCC-ee YETS (≥12 weeks)
 • Alignment → 4 weeks? = 20 days
 • ElemPOD /min = 3
• Requires longer days or more “teams”
 • 1 “team” / sector => 1 ElemPOD / 4 mins
 • and 12 h day => 1 ElemPOD / 8 mins
Available Time

• TS (~5 days)
 • Alignment → 2 days?
 • ElemPOD / min ~ 30
 • 1 “team” / sector => 2.5 ElemPOD / min
 • and 12 h day => ~1.5 ElemPOD / min
Notes

• Only considered the Arcs
• Only looked at one position determination
 • 3D Position and Orientation
• An alignment of an element may take longer
• Smoothing a sector is an iterative process
 • e.g. 100% meas -> Calculation -> 30% align
 -> 30% meas -> Calculation -> 10% align
 -> 10% meas -> Calculation
Notes

• Only considered the Arcs
• Only looked at one position determination
 • 3D Position and Orientation
• An alignment of an element may take longer
• Smoothing a sector is an iterative process
 • e.g. 100% meas -> Calculation -> 30% align
 -> 30% meas -> Calculation -> 10% align
 -> 10% meas -> Calculation
Notes

- Only considered the Arcs
- Only looked at one position determination
 - 3D Position and Orientation
- An alignment of an element may take longer
- Smoothing a sector is an iterative process
 - e.g. 100% meas -> Calculation -> 30% align
 -> 30% meas -> Calculation -> 10% align
 -> 10% meas -> Calculation
- SU experience from Smoothing
 => 1 team, ~25 elements / week!
CDR Baseline
-Full Remote Alignment System

- WPS Wire Replacement System:
 - Mechanics
 - Height x width → 0.5 x 0.3 (m)
- WPS Wire Replacement System:
 - Suction
 - Height x width → 0.3 x 0.3 (m)
- HLS Pipe (curved in horizontal plane)
 - Slope = 1.4%, length 38 m
 - Height x width → 0.65 x 0.1 (m)
- HLS Refill System
 - Height x width → 0.3 x 0.4 (m)
- HLS Sensor
 - Height x width → 0.2 x 0.15 (m)
- Element Girder
- Survey Equipment Support
Survey train

• A collimator Survey train developed at CERN
 • W.r.t known position of quads
 • Photogrammetry and offset to a stretch wire

 • Tested in 2011-2012 and currently refurbished
 • Accuracy not so good in vertical because of the sag of the wire
 • Installation of the wire is manual
 • Replacing the offset measurements by photogrammetry on the wire

Courtesy: P. Bestmann
Survey train: new concepts

- Vertical survey train
 - 2 measurement wagons
 - HLS hold by a robotic arm
 - cameras
Survey train: new concepts

- Horizontal survey train
 - 1 measurement wagon
 - 2 auxiliary wagons for fixing the wire
 - A tension system
 - A robotic arm to fix on the magnets
FCC-ee possibility
Other Automation Possibilities
Marking Out

[Image of people working with equipment inside a tunnel]

[Diagram showing a red paint head and reference points]
Aligning Positioning System Head

Alignment Cup
Vertical movement

Reference Points

Jack Head
Thank you for your attention