Exploring the lifetime frontier

Supplementary detectors

Simon Knapen Institute for Advanced Study @ Fermilab09 / 18 / 18

V. Gligorov, SK, M. Papucci, D. Robinson: 1708.09395 V. Gligorov, SK, B. Nachman, M. Papucci, D. Robinson: 18xx.xxxxx

Long-Lived Particles are generic

1. We already know many

Because $m_W >> \Lambda_{QCD}$

Long-Lived Particles are generic

2. Also generic in BSM

R-parity violation Gauge mediation (mini-)split SUSY

stealth SUSY

Asymmetric Dark Matter

Freeze-in

composite Dark Matter

Baryogenesis

Neutrino masses

Neutral Naturalness

Hidden Valleys

Wide range of masses & lifetimes

no single experiment has comprehensive coverage

Theory priors

Long lifetimes arise from a hierarchy of scales or a small coupling*

Three mechanisms:

- Off-shell decay (e.g. π[±])
- Small splitting (e.g. neutrons)
- Small coupling

- Lifetime strong function of mass
- Light (~ GeV) hidden states are generically long-lived

* could either be a hierarchy or loop suppression

Experimental Landscape (ATLAS/CMS)

Experimental Challenges

- 1. Triggers: Tracker detectors are very powerful for LLP's but difficult to trigger. (LHCb, CMS track trigger, ...)
- 2. Backgrounds: Often low, but subtle (punch-through jets, cosmics, secondaries, ...)
- 3. Reconstruction: Special tracking algorithms needed, large number of unassociated hits.

Tracking example: quirks

Essentially a flux tube of a dark confining sector

Oscillates, eventually annihilates

Quirk-antiquirk pairs cannot be created, flux tube never breaks

J. Kang, M. Luty: arXiv: 0805.4642

Need model-independent ways to find unconventional tracks underneath pile-up background

"Tracking" Quirks

All hits lay in a plane

As long as the string tension >> Lorentz force, the trajectories will be planar

(valid for any central force)

SK, T. Lou, M. Papucci, J. Setford: 1708.02243

Finding Long-Lived Particles

ATLAS and CMS are very good at searching for high mass LLPs...

- ... but for low masses they suffer from:
 - 1. Tight trigger requirements
 - 2. Backgrounds

A typical hadron has a chance of

- ~ 10^{-5} to punch through calorimeter...
 - ... but the LHC makes ~ $10^9 \text{ K}_{\text{L}}$ mesons /s

~ 10 nuclear interaction lengths (ATLAS)

Solution: Dedicated detector with ~ 3 to 4 times more shielding

Lifetime frontier

(HIGHLY oversimplified!)

Detectors for the lifetime frontier

"Ambitious" proposals

SHiP

MATHUSLA

"Modest" proposals

CODEX-b

Miliqan

12

SHiP

Beam dump experiment at the SPS accelerator

1708.09389: J. Feng et. al.

Ultra-forward detector on LHC beam line

Some specs:

- ~ 5-10 meters long
- ~ 400 meters from IP
- Need small but good tracker

Main use:

- light sterile neutrinos
- dark photons
- other light LLPs

Substantially less reach than SHiP but much cheaper (For some signals, competition from Fermilab's SeaQuest experiment)

(200 m)² detector, above CMS

CERN-LHCC-2018-025: C. Alpigiani et. al.

Some specs:

- 200 m x 200 m x 25 m (smaller designs considered)
- Construct in 9 m x 9 m x 25 m modules
- RPC's for tracking

MATHUSLA

Use timing to reject cosmic rays

Main use:

- Exotic Higgs decays
- LLPs which require high \sqrt{s}
- Most light LLPs (except dark photon)

Data acquisition will be moved to surface for run 3

Data acquisition will be moved to surface for run 3

Reconstruction efficiency (proof of concept)

- Require 6 hits per track
- Require minimum momentum of 600 MeV per track

$c\tau$ (m)	$m_{\varphi} \ [B o X_s \varphi]$			$m_{\gamma_{ m d}} \; [h o \gamma_{ m d} \gamma_{ m d}]$				
	0.5	1.0	2.0	0.5	1.2	5.0	10.0	20.0
0.05	_	_	_	0.39	0.48	0.50	_	_
0.1	_	_	-	0.48	0.63	0.73	0.14	_
1.0	0.71	0.74	0.83	0.59	0.75	0.82	0.84	0.86
5.0	0.55	0.64	0.75	0.60	0.76	0.83	0.86	0.88
10.0	0.49	0.58	0.74	0.59	0.75	0.84	0.86	0.88
50.0	0.38	0.48	0.74	0.57	0.75	0.82	0.87	0.88
100.0	0.39	0.45	0.73	0.62	0.77	0.83	0.87	0.89
500.0	0.33	0.40	0.75	-	\ -	_	—	_
low boost				h	nigh boo	ost		
0 MeV cut						small o _l overlap	oening ping de	angle, ecay pr

Possible features

- Close to LHCb: ~ 4 bunch crossings for relativistic objects integrate CODEX-b in DAQ & readout as LHCb subdetector
- Relatively small, more ambitious design (timing, calorimetry, etc) may be possible
- Muon shadow may be exploited for more energetic signals

with mb crosssection, scattering probability is $\sim 10^{-3}$

~ 10^7 events but can be veto-ed with shield veto + front face of the box

neutrons / K_L + secondaries

prompt plus secondary from muons hitting shield

~ 32 interaction lengths (7 concrete + 25 Pb) → roughly 4.5 m of Pb

neutrons / K_L + secondaries

pythia 8 + GEANT 4 simulation

- need 10⁻⁴ 10⁻⁵ muon veto, easily achieved with a few redundant layers
- neutrons dominate, with ~ 5% chance of scattering on air in the box
- secondary neutrinos completely negligible

primary neutrinos

Very tricky to model, but with extremely conservative cuts, ~ 3 events

Likely to be overestimate with several orders of magnitude

Signal benchmarks

- 1. Light scalar mixing with Higgs
 - Produced in $B \rightarrow X_s \, \varphi$ decays
 - Lifetime and production rate both set by mixing angle

- 2. Dark photon
 - Produced in h $\rightarrow \gamma_{d} \gamma_{d}$ decays
 - Production rate and lifetime controlled by independent parameters

Light scalar mixing with Higgs

Production

$$Br[B \to X_s \phi] \approx 6 \ s_\theta^2 \ (1 - m_\phi^2 / m_B^2)^2$$

Roughly ~ 10¹⁴ B-mesons with 300 fb⁻¹

Decay

Large theory uncertainty

Different experiments make different assumptions to evaluate their reach

- LHCb, CODEX-b: "baseline" model
- SHiP: "spectator" model
- MATHUSLA: slight variation on "baseline" model

10²

A. Fradette, M. Pospelov 1706.01920 J. F. Donoghue, et. al. , Nucl. Phys. B343, 341 (1990).

J. Evans: 1708.08503

Light scalar mixing with Higgs

Reach

SHiP and MATHUSLA recast to "baseline" model

For low masses, ATLAS/CMS are background limited, CODEX-b and MATHUSLA have an edge

ATLAS reach: A. Coccaro, et al.: 1605.02742

Characterizing the signal

Parent boost reconstruction

Most important parameter is distance to first measured point

Mass measurement

Only spatial information

Rudimentary mass measurement possible even without calorimetry

Mass measurement

Include timing

For exotic B decays, mass separation can be improved by including time-of-flight information

Moving forward

Ongoing work on theory side: more benchmark models (back-up slides, see also upcoming PBC report)

Ongoing work on the LHCb side

- Data driven background estimate
- Detector design and add to LHCb simulation
- On track for a detector paper in Fall / early Spring

Team

V. Coco	LHCb
J. Evans	Theory
B. Dey	LHCb
R. Dumps	LHCb
V. Gligorov	LHCb
S. Knapen	Theory
J. Lee	LHCb
M. Papucci	Theory
H. Ramani	Theory
D. Robinson	Theory
H. Schindler	LHCb
T. Szumlak	LHCb
X. Vidal	LHCb

Still growing, and we welcome new collaborators!

What would an "ideal" detector look like?

- √s = 13 TeV
- As close as possible to IP
- B field for momentum measurement
- High resolution tracker (vertex reco)
- as high lumi as possible

L3 magnet (0.5 T)

Most of this is present in ALICE cavern (At this time, there is no (public) ALICE heavy ion program during run 5)

ALICE detector

A Laboratory for Long-Lived eXotics (AL3X)

Reuse the L3 magnet and (perhaps) the ALICE TPC

Similar strategy as for CODEX-b: use thick shield with active veto to reduce the backgrounds

V. Gligorov, SK, B. Nachman, M. Papucci, D. Robinson: 18xx.xxxx

Upgrading Interaction Point 2

Needed:

- move the IP with 11.25 m
- ~ 100 fb⁻¹

```
Similar to IP8 (LHCb)
```

Possible challenges:

- luminosity sharing
- beam optics
- cost?

Most obvious failure mode at this moment

Reduced by the shield:

- neutrons scattering on air
- $\bullet \ K_L$

Need ~ 40 interaction lengths + 10^{-8} muon veto

BG species	Full shield	d (S ₁ -S ₂)	Evade shield	Net BG flux/event into detector	BG rate	
	shield veto rate BG flux/event		BG flux/event		per 100 fb ⁻¹	
$n + \bar{n} (> 0.5 \text{GeV})$		$3. \times 10^{-14}$	_	$2. \times 10^{-7}$	$\lesssim 10$	
$p + \bar{p}$	$2. \times 10^{-6}$	$4. \times 10^{-15}$	-	$2. \times 10^{-7}$	_	
μ	0.008	$1. \times 10^{-11}$	0.007	0.008	_	
e	$3. \times 10^{-7}$	$2. \times 10^{-15}$	—	$2. \times 10^{-7}$		
K_L^0	—	$5. \times 10^{-17}$	—	$4. \times 10^{-9}$	$\ll 1$	
K_S^0	—	$1. \times 10^{-17}$	—	$1. \times 10^{-9}$	$\ll 1$	
γ	—	$6. \times 10^{-16}$	—	$3. \times 10^{-8}$	—	
π^{\pm}	$1. \times 10^{-6}$	$5. \times 10^{-15}$	—	$2. \times 10^{-7}$	—	
$\nu+\bar{\nu}~(>0.25{\rm GeV})$	—	0.2	0.02	0.2	$\lesssim 10$	

GEANT4 simulation: Low background setup appears possible

Reach for Higgs decays

Reach for B decays

(Scalar mixed with Higgs)

For exotic B decays, AL3X easily has the best sensitivity of all proposals

Reach for B decays

For exotic B decays, AL3X easily has the best sensitivity of all proposals

Reach for π , η decays

 π^0, η

AL3X has sensitivity for kinetically mixed dark photons, but it's not the best (Basically because there is no brehmstrallung contribution)

People & moving forward

V. Gligorov	LHCb	
S. Knapen	Theory	
B. Nachman	ATLAS	Just getting started, so we welcome ideas and collaborators
M. Papucci	Theory	
D. Robinson	Theory	Find me if you want to know more

Moving forward

- Finish proof-of-concept study (next few weeks)
- More detailed background studies
- Study beam optics (expertise needed)

Lifetime frontier

Supplementary detectors

	Higgs decay	B-meson decay	π,η-decay (dark photon)	Progress	Cost
FASER		v	v	Collaboration formed	\$
CODEX-b	v	v		sub-collaboration formed	\$
SeaQuest			v	experiment exists	\$
AL3X	v	~	\checkmark	Proof of concept	\$\$
MATHUSLA	v	(🗸)		Letter of intent	\$\$
SHiP		v	\checkmark	Technical design report	\$\$\$

MOEDAL: monopoles, already running

MiliQan: milicharged particles, phase 1 detector in place

Lifetime frontier

very non-exhaustive list!

Existing detectors & upgrades

Triggers!

- LHCb triggerless readout
- CMS track trigger, ATLAS FTK
- HLT keeps getting smarter (e.g. track multiplicity triggers?)

<u>Upgrades</u>

- Timing detectors
- CMS high granularity forward calorimeter

Analysis improvements

- Dark showers / hidden valleys (now largely a theory problem in my opinion)
- Quirks (GEANT implementation appears to be the bottleneck)

Thanks!

Greenland shark, lifespan up to 400 years

Back-up

Projected reach

Colored production

Drell-Yan production

SK, T. Lou, M. Papucci, J. Setford: 1708.02243

Why is this hard?

- Signature depends strongly on m_Q and Λ
- Even for same model point (m_Q , Λ), strong dependence on ISR

Both trajectories must be fit together, in total 8 degrees of freedom in the fit!

Tons of unassociated hits from pile-up

Need a model-independent way to reject pile-up background to 10⁻⁹, while maintaining signal efficiency

LHCb coverage for LLP's

Higgs mixing portal

LHCb: 1612.07818

Dark photon portal

P. Ilten, J. Thaler, M. Williams, W. Xue: 1509.06765 P. Ilten, Y. Soreq, J. Thaler, M. Williams, W. Xue: 1603.08926

Hidden valleys

A. Pierce, B. Shakya, Y. Tsai, Y. Zhao: 1708.05389

LHCb: 1612.07818

More general models

Reach

Complementary reach compared to main LHCb detector

(Branching ratio to muons is irrelevant for CODEX-b)

Hidden glueballs (Neutral Naturalness)

ATLAS / CMS pay double penalty at low mass:

- Backgrounds go up
- Requiring a second displaced vertex kills the signal rate

Heavy neutral leptons

- Production: any SM decay with neutrinos (c, b, τ, W & Z decays)
- Decay: Mix back to off-shell SM neutrino (N→3v, N→ℓ hadrons, N→vℓℓ)

10^{-2} 10^{-4} $\overline{\underbrace{O}_{e_{N}}^{e_{N}}} 10^{-6}$ NA62 --- DUNE 10^{-8} SHiP FASER MATHUSĿA CODEX-b 10^{-10} 0.2 10 1 m_N [GeV] $U_{\mu N}$ and $U_{\tau N}$ in the back-up material

Example: U_{eN}

18xx.xxxxx: J. Evans, SK, M. Papucci, H. Ramani D. Robinson

Heavy neutral leptons

- Production: any SM decay with neutrinos (c, b, τ, W & Z decays)
- Decay: Mix back to off-shell SM neutrino (N→3v, N→ℓ hadrons, N→vℓℓ)

18xx.xxxx: J. Evans, SK, M. Papucci, H. Ramani D. Robinson

see also: Heo, Hirsch, Wang: 1803.02212

Heavy neutral leptons

- Production: any SM decay with neutrinos (c, b, τ, W & Z decays)
- Decay: Mix back to off-shell SM neutrino (N→3v, N→ℓ hadrons, N→vℓℓ)

18xx.xxxx: J. Evans, SK, M. Papucci, H. Ramani D. Robinson

Axion-like particles

Below the 3π threshold, the lifetime is enhanced

It is non-trivial but perhaps not impossible for CODEX-b to see the 2γ mode (Will depend on final design choices.)

18xx.xxxxx: J. Evans, SK, M. Papucci, H. Ramani D. Robinson