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OVERSAMPLING AND INTERPOLATION QUALITY

(n)

o In n dimensions: Singular Value Decomposition (SVD) requires N,

generator runs:

N =14+ n+n(n+1)/24 (n+1)(n+2)/6

cubic only

@ SVD allows for oversampling.
o Degree of oversampling: D = Nmns/N

What is a sensible D?

mm

— use (0(1000) different interpolations with different Nyyns

Perform minimisations, investigate g.o.f. measures

e Examples shown are from a two-dimensional Tuning of Jimmy
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DISTRIBUTION OF (GOODNESS OF FIT VALUES

@ Spread of results decreases with increasing D, polynomial degree

o Observe lower x2/ Nge-boundary

x? — distribution of minimisation results
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(GOODNESS OF FIT VS. DEGREE OF OVERSAMPLING

o Oversampling is neccesary, D > 2...3 seems sensible

@ Hower, g.o.f. improves slowly for D > 4, almost saturates

Mean x2/Ng¢ vs. degree of oversampling
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TUNING UNCERTAINTIES (WORK IN PROGRESS)

Goal: establish a robust estimate of tuning uncertainties (confidence-belt)

We currently study two different sources of tuning uncertainties:

@ Statistical uncertainties — exploit pz | .
covariance matrix returned by . .
minimiser (inspired by NNPDF . o P°
approach) L ’

- P Pt

@ Intrinsic systematics of the
Professor method: freedom when
parameterising generator response °
— many minimisation results o °
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CONFIDENCE BELT CONSTRUCTION

@ Use points sampled from ellipsis or different minimisation results
@ Use parameterisation to get bin-content predictions

© For each bin b and each observable O: determine central 68, 95 pct.
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CONFIDENCE BELT - WITHOUT PSEUDODATA

statistical uncertainties “systematic”’ uncertainties

Transverse region charged particle density
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CONFIDENCE BELT - ADDING PSEUDODATA

statistical uncertainties “systematic”’ uncertainties

Transverse region charged particle density
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UNDERLYING EVENT PLATEAU. ..

Transverse region charged particle density

—e— CDF Run II (pp)
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... ITS MEAN EVOLVING WITH \/E

((Nen/dnd¢))
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SUMMARY

We studied how the interpolation benefits from oversampling

N,uns/Nrf]fg > 2...3 is advisable

Working on quantification of tuning uncertainties

o Statistical uncertainty estimate shows expected behaviour

More work, especially on systematic uncertainty estimate needed

Thank you!
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Backup



2nd order polynomial includes lowest-order correlations between parameters

MGo(p) = F(B) = ag” + LB} i+ L3 ol pj
i i<j

Now use N generator runs, i.e. N different parameter sets x,y:

Xo
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v (N values, i.e. N bin contents) P (N sampled parameter sets) ¢ (coeffs)

Therefore: | ¢, = Z[P]v | where 7 is the pseudoinverse operator.




¢, = I[PV

e Use Singular Value Decomposition (SVD), a general diagonalisation
for all normal matrices M:M = UL V*

@ Method available in SciPy.linalg

e Minimal number of runs = number of coefficients in ¢:
N =14 n4n(n+1)/2

min

Num params, P N(2P> (2nd order) N(3P) (3rd order)
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cubic only
@ Oversampling by a factor of three has proven to be much better
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