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1) The problem
2) Proposed observable definitions
3) Some implications
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& Zand W

The Z resonance is extremely useful at hadron colliders:
- electron and muon channels give very clear signals
- very low background

.

Used for calibration:
- determine lepton energy scale from shape and position of Z peak
- defermine lepton efficiencies using “tag and probe”
- use production rate as luminosity monitor?

And to access a wide range of physics:
- PDFs from rapidity distribution, W charge asymmetry
- new physics in Afb, Z' search, etc
-/ pT or al fo measure hadronic recoil
- resummation calculation at low pT, al
- pQCD at high pT
- /+jet production: test pQCD, also main background to Higgs
etfc etc etc

The problem:
- the Z (or W) is not an observable!
- theory corrections are applied to data to get to the 2" -> model dependence!
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In published data measurements, typically:

- correct for detector resolution and efficiency

- correct from the measured dilepton the the (non-observable) /7

- extrapolate from measured phase space to full 4-pi coverage

The result is a mix of measurement and (significant) theory corrections

Propose definitions of “observables”, based on the particles that enter the detector
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A measured electron:

- a cluster of energy in the calorimeter &

- the sum of all EM energy in the clustfer e
- electron + FSR + photons from underlying event

- wider angle FSR is “lost” Y

. : . ",
- ie cannot be associated with electron

A measured muon:
- curved track in tracking detector
- ALL FSR is lost, underlying event has no effect
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Data should still be corrected for detector resolution and efficiency
- “unfolding”, a difficult subject worthy of several talks...

.
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Particle Level :
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Data should still be corrected for detector resolution and efficiency
- “unfolding”, a difficult subject worthy of several talks...

In simulation, construct “Z” and “W” from the particles entering the detector:
1) Consider all particles with ctau > 10 mm as “stable” (ie reach the detector)
2) Muon: any stable muon. ie after QED FSR, to mirror a tracking detector

3) Electron: combine EM energy in a cluster, to mirror a calorimeter
- eg, a cone with R=0.2 (suitable for Tevatron)

4) Missing ET: vector sum of all neutrinos in event
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In simulation, construct “Z” and “W” from the particles entering the detector:
1) Consider all particles with ctau > 10 mm as “stable” (ie reach the detector)
2) Muon: any stable muon. ie after QED FSR, to mirror a tracking detector

3) Electron: combine EM energy in a cluster, to mirror a calorimeter
- eg, a cone with R=0.2 (suitable for Tevatron)

4) Missing ET: vector sum of all neutrinos in event

o) Dilepton (Z) selection should mirror data:
- consider all leptons in acceptance range (eg | etal <2.5)
- make opposite sign pairs, keep those in mass range (eg 65-115 GeV)
- when >1 pair, pick “best” in same way as for dafta
- eQ closest to Z mass

o) Lepton + MET (W) selection should mirror data:
- eg highest pT lepton inside acceptance, combined with MET
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FSR Properties ;

Does any of this actually make a difference?

E:

Test sample: p pbar->Z->ee and Z->mumu, Pythia 6.421, tune Perugia 6
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n — Z/y* boson

---:Dielectron

FSR -> dilepton system lower energy than “Z2”
- Direct effect on dilepton mass distribution

== Dimuon

events / generated Z
=)

1) this is used in calorimeter and tracker calibration
- energy scale and resolution

10

Do not want calibration to compensate for FSR!

-
o
[

- peak position mostly unaffected
- energy scale

. 2 + Dielectron
- upper edge of peak mostly unaffected Nt e, o Dimuon
- resolution g 18 %
- using the lower edge of the peak relies on FSR g of %
L0 o]
g | o
_ 2 14 - o
2) Also affects Drell-Yan cross section S0 e o
- typically measured in mass range ar " 0
- for, eg 65-115: i R —
- net loss of 0.9% in Z->ee - mzooooooogmooooooo
- net loss of 2.1% in Z->mumu 0.8 L el
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— Z/y* boson
---AR=0.2
--AR=0.5
-+AR=1.0

Previous publications of Z pT:
- corrected from measure leptons o Z
- corrected to 4pi acceptance
s it possible to reproduce these using stable particles?

events / generated Z
o
\

Try to catching more FSR:
- increase the electron cone size: 0.5 and 1.0
- note: these are not observables!

0.5 cone moves closer 1o Z

RI,?‘1.08
1.0 goes too far =
. ol
- catch too many underlying event photons .
o I. —
$1.02 F 55

Cannot reproduce previous measurements!
- without “cheating”
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A nl — Z/y* boson
Electron and muon channels: 3 107¢ .- Dielectron
- Independent stafistics 2 .. Dimuon
- uncorrelated systematics -;'3
-> combine! ‘5
Q
But, have shown we measure different things o2
- different total cross section and kinematics -
- due to different detector response to FSR
Can correct both to 4pi Z, then combine.
A minimally model dependent combination: TN N T T TN
- limit both leptons to same phase space };.1_015_ .. ij. .  Dielectron
- correct muons for narrow angle FSR SR g@"’ﬁ%& Dimuon
- ie to same level as electons g F d;" L
- then combine 5099F & "'Efn;}?%?%ga;iqx@
o) 2 ?32:"
0098 R &
In simulated Z->mumu: s b ; S
- either apply same correction used in data 0'97; b
- or directly treat muons like electrons 0.96 7
- (or just generate one channel) o_gsf_
0.94 bl
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Publish observables!
- in both experiment and theory papers

G. Hesketh

.

To date, all published Z pT results are of “boson-level” quantities:
- both experimental and theoretical results
- cannot be implemented in RIVET!
- only three DO Z+jet papers use the particle level

Need to address this for Tevatron “legacy” measurements, and LHC
There are several topics for discussion:
- best particle level electron definition for LHC experiments

- how best to handle lepton isolation requirements
- can measure efficiency in data and correct the measured spectrum

- best definition of particle level MET
- experimental MET is a complicated quantity...

- how to handle event vetos at particle level
- eg second lepton veto in W analysis.
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