Quantitative risk assessment in process safety studies: an overview

Gabriele Landucci

Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 2, 56126, Pisa (Italy)

gabriele.landucci@unipi.it

"An engineering perspective on risk assessment: from theory to practice"

CERN (Geneva, Switzerland) 26-27 November 2018

Introduction (1)

Process industry

Examples: chemical and petrochemical sector, Oil and Gas (O&G), explosives, fertilizers, etc.

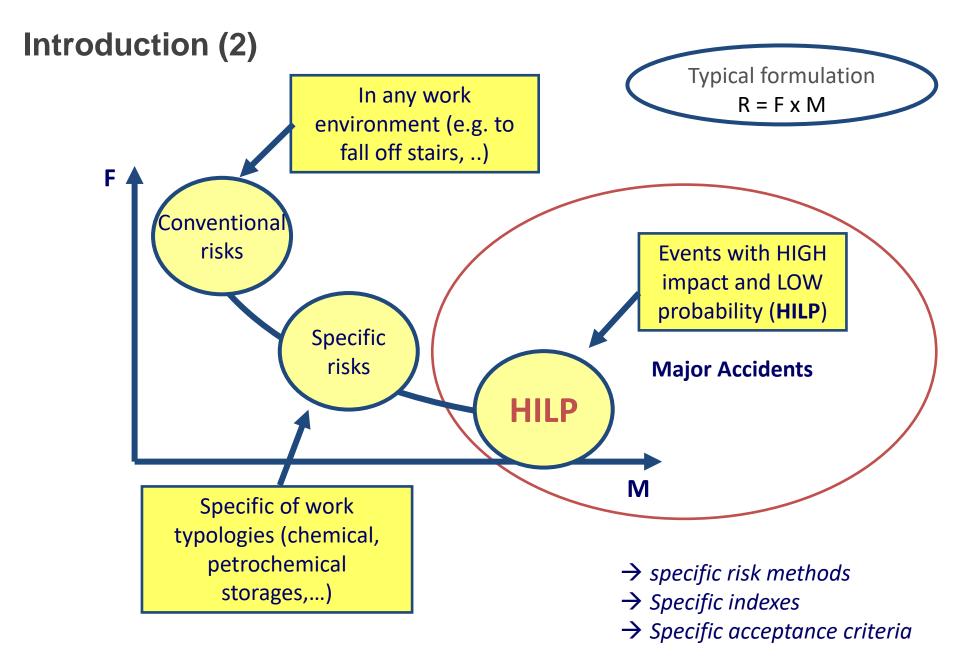
Process safety

Dealing with major accident hazard and induced risk – LOSS PREVENTION

Major accidents definition ("Seveso" Directive (art. 3))

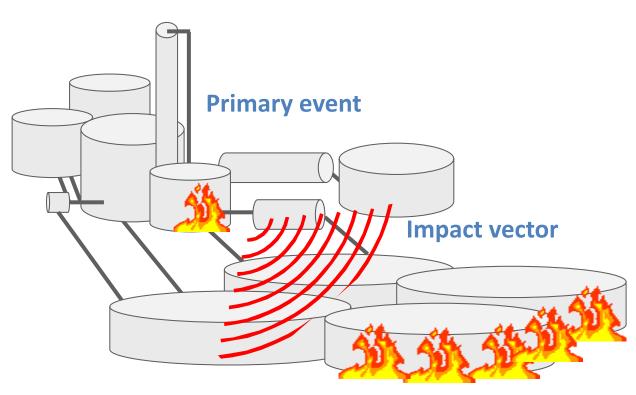
"Occurrence such as a major emission*, fire, or explosion resulting from uncontrolled developments in the course of the operation of any establishment, and leading to serious danger to human health and/or the environment, immediate or delayed, **inside or outside the establishment**, and **involving one or more dangerous substances**";

* for instance a toxic cloud



(Inherent) hazardous properties

Specific conditions (handling and storage) high or low pressure, high or low temperature



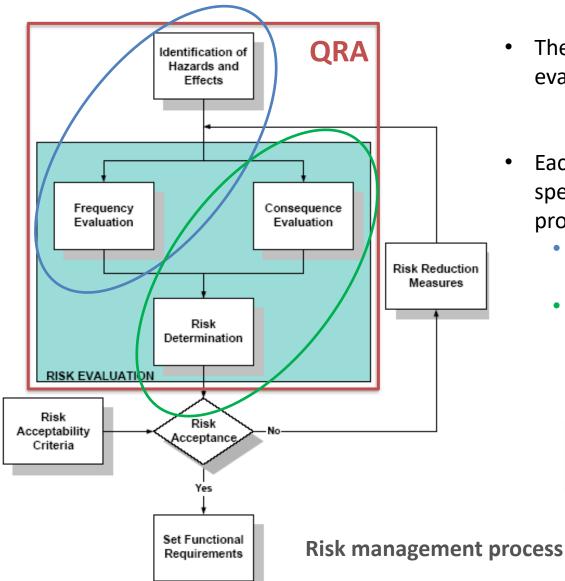
Introduction (3)

DOMINO EFFECT and related risks

Secondary event – domino effect escalation

- Domino effect was responsible of several catastrophic accidents that took place in the chemical and process industry
- Seveso Directive requires that all the possible accidental scenarios caused by domino effect are taken into account.
- No well accepted approach exists for the analysis of domino hazards.

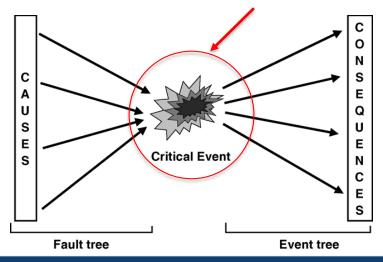
Outline and aims of the presentation


- Presentation of Quantitative Risk Assessment (QRA) in the process industry
- QRA methodology: description of main steps and specific studies for domino effect
- QRA and risk indexes: definition of specific risk indexes and related risk acceptance criteria
- Example of application for land use planning and domino effect analysis

Quantitative Risk Assessment in process safety (1)

- The generic procedure for risk evaluation is well-established
- Each box requires the application of specific tools to the analysis of the project/installation
 - General and common-use tools are available
 - Different available approaches and disagreement in the use of results

Complex events: domino effect Need of extension


Quantitative Risk Assessment in process safety (2)

Hazard identification

Past accident accidents data analysis is a useful support. However, structured techniques are needed, containing both experience based and predictive elements

Based on brainstorming assessment

Focusing on Consequences \rightarrow HAZID Focusing on the process \rightarrow HAZOP

- Safety Review
- Relative Ranking Methods (F&EI, Mond Index, CEI, etc.)
- Check-list Analysis
- Preliminary Hazard Analysis
- HAZID (Hazard Identification) Analysis
- What-if Analysis
- FMEA (Failure Modes and Effects Analysis)
- HAZOP (Hazard and Operability) Analysis
- Fault Tree Analysis
- Event Tree Analysis
- Human Reliability Analysis

..... and many others

Quantitative Risk Assessment in process safety (3)

Frequency evaluation

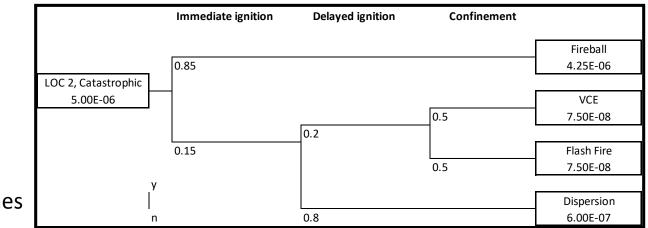
Open issues: "static"analysis, dynamic approach is missing

Fault tree analysis

Only for complex accident chains

Generic frequencies data for the critical events for random failures (frequency in 1/y)

	WDS fails	on demand	Installation (part)	G.1	G.2
	OR		(source: Purple Book)	Catastrophic failure	Leak
		Logic solver fails on demand G.1	pumps without additional provisions	$1 \times 10^{-4} \text{ y}^{-1}$	$5 \times 10^{-4} \text{ y}^{-1}$ 2.5 × 10 ⁻⁴ y ⁻¹ 5 × 10 ⁻⁵ y ⁻¹
Detection system			pumps with a wrought steel containment	$5 \times 10^{-5} \text{ y}^{-1}$	$2.5 \times 10^4 \text{ y}^{\text{-}1}$
fails on demand er k re	AND AND	Hardware fails on demand demand	canned pumps	$1 \times 10^{-5} \text{ y}^{-1}$	$5 \times 10^{-5} \text{ y}^{-1}$
Detector fails on demand No manual au	ctuation	No automatic actuation OR OR OR	Main power supply is unavailable		
OR I pump Is on mand OR No alarm is sound OR OR	Operator fails to actuate	Diesel pump fails on demand Impulse line to start pump failure			


Quantitative Risk Assessment in process safety (3)

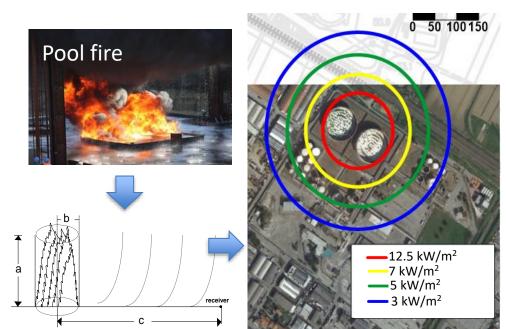
Frequency evaluation

Open issues: "static"analysis, dynamic approach is missing

Fault tree analysis Only for complex accident chains *Generic frequencies data* for the critical events for random failures (frequency in 1/y)

Installation (part)	G.1	G.2
(source: Purple Book)	Catastrophic failure	Leak
pumps without additional provisions	$1 \times 10^4 \text{ y}^{-1}$	$5 \times 10^{-4} \text{ y}^{-1}$
pumps with a wrought steel containment	$5 \times 10^{-5} \text{ y}^{-1}$	$2.5 \times 10^{-4} \text{ y}^{-1}$
canned pumps	$1 \times 10^{-5} \text{ y}^{-1}$	$5\times10^{\text{-5}}~\text{y}^{\text{-1}}$

Event tree analysis


Identification of final outcomes

Quantitative Risk Assessment in process safety (4)

Consequence assessment – "conventional" approach

Integral models (lumped parameters) fires, explosions and toxic dispersion Commercial packages (DNV GL Phast, TNO Effects, US EPA ALOHA, etc.)

Open issues: advanced modeling

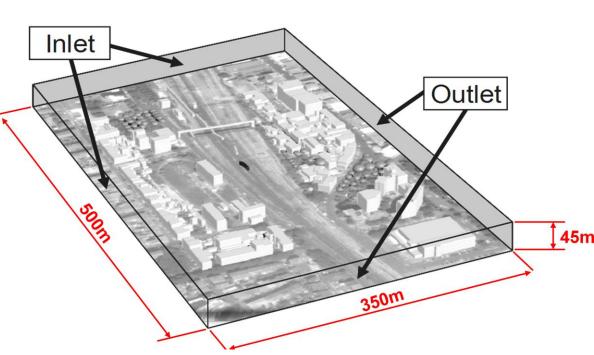
Involvment of population

TOXIC DISPERSION

Weather : Category 5/D Material: HYDROGEN CYANIDE Averaging Time: Toxic(600s) Height 0 m Legend : Concentration Time: 210.02 s

410000 ppm

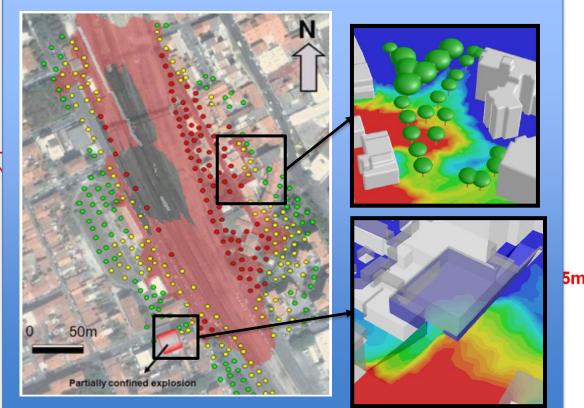
UNIVERSITÀ DI PISA


Quantitative Risk Assessment in process safety (5)

Consequence assessment – "advanced" approach (CFD modeling of accident scenarios)

Viareggio accident in Italy (2009)

LPG flash fire after catastrophic release following derailment in urban area (32 fats.)

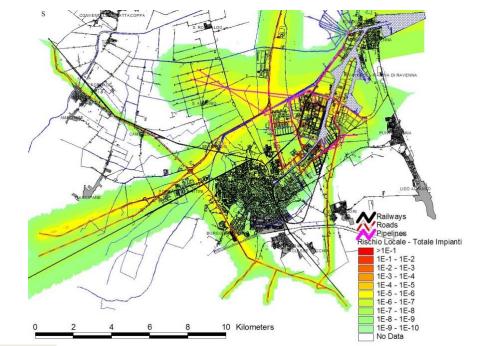

Quantitative Risk Assessment in process safety (5)

Consequence assessment – "advanced" approach (CFD modeling of accident scenarios)

Viareggio accident in Italy (2009)

LPG flash fire after catastrophic release following derailment in urban area (32 fats.)

Landucci et al., JLPPI, 2011 Pontiggia et al., Atm Env, 2011



Definition of Risk indexes (1)

LOCAL SPECIFIC INDIVIDUAL RISK - LSIR

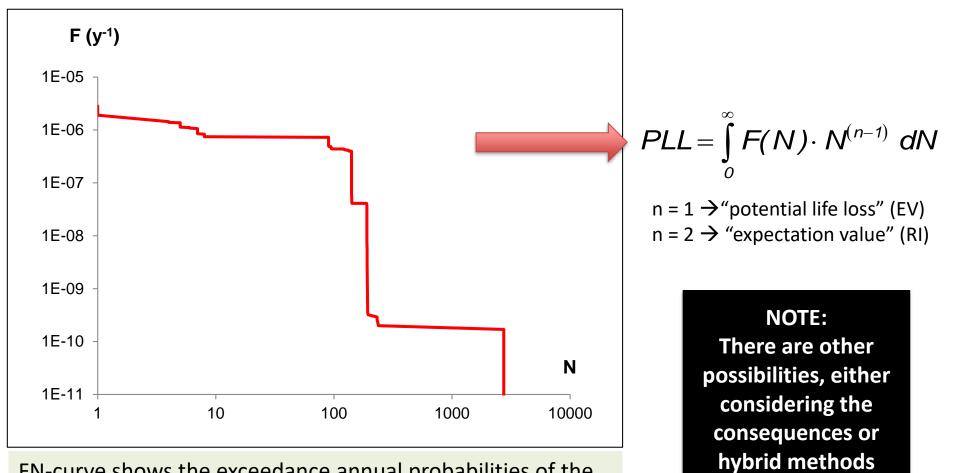
The risk to a person in the nearby the hazard (point or linear source)

"The expected frequency of the reference damage occurring as a consequence of any accident, to a person who is permanently present (24h a day per one year) in a given point of the area, with no protection and no possibility of being sheltered or evacuated"

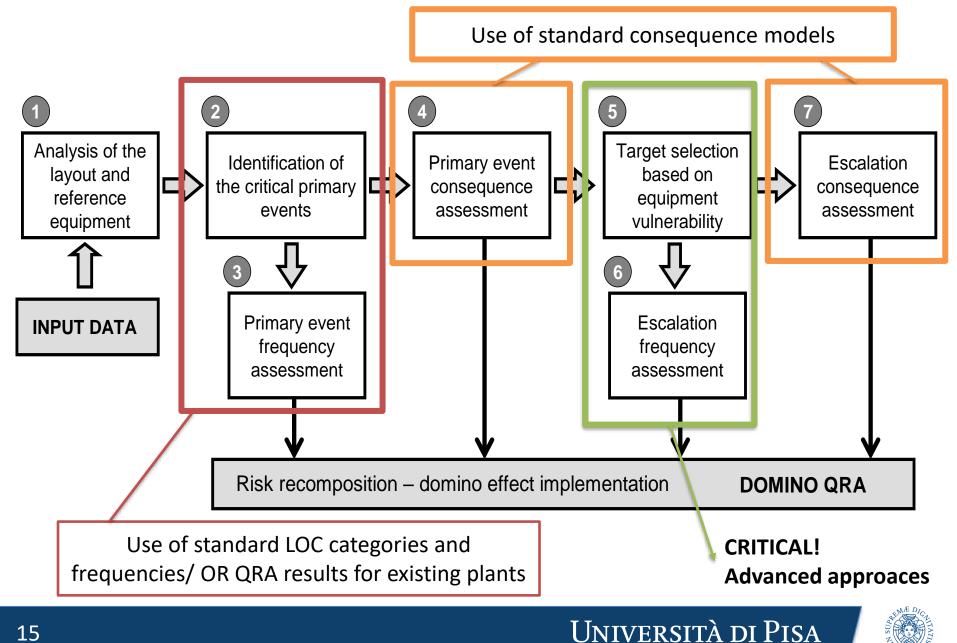
$$\Delta IR_{S,M,\varphi,i} = f_S \times P_M \times P_\varphi \times P_i \times P_d$$

 f_s frequency of top event; P_M probability of meteo cond; P_{Φ} prob wind direction, P_i prob scenario (ignition?); P_d probability of death Exposure time : the time an individual is subjected to the dangerous concentration

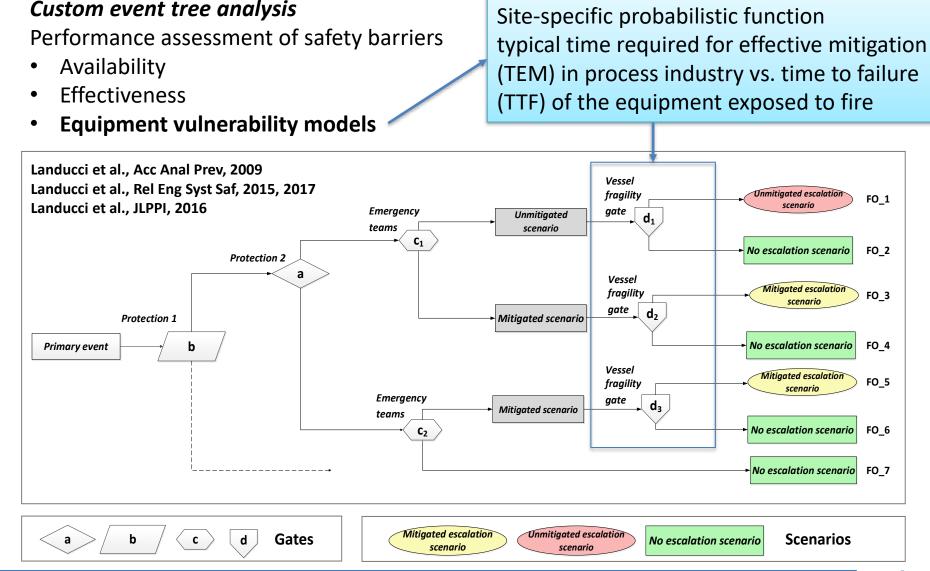
$$\Box SIR = \sum_{S} \sum_{M} \sum_{\varphi} \sum_{i} \Delta IR_{S,M,i}$$


I = heat radiation, kWm^2 C = concentration, mg/m^3 ΔP = peak overpressure, Pa \rightarrow P DAMAGE PROBABILITY MODELS \rightarrow DAMAGE PROBABILITY

 $\mathcal{D}.l$

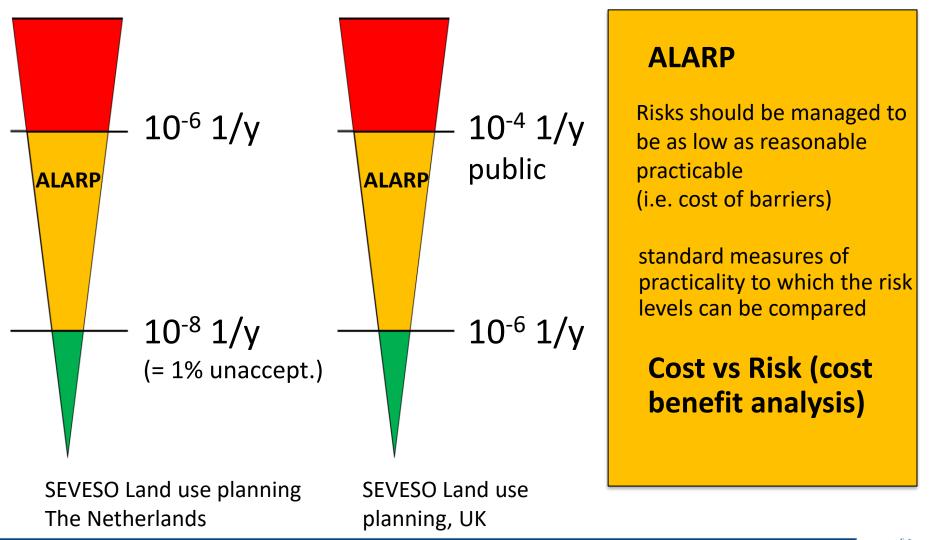

Definition of Risk indexes (2)

Societal Risk: FN-curves and and related indexes

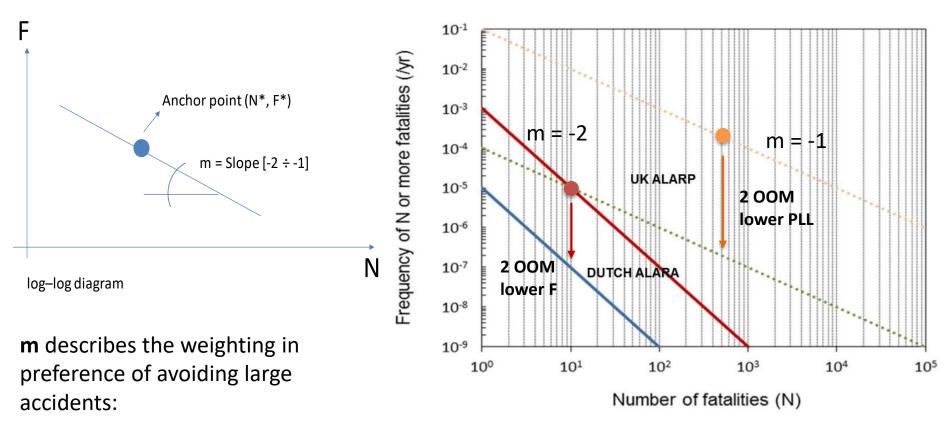


FN-curve shows the exceedance annual probabilities of the potential numbers of fatalities ($F(N \ge n)$) on double log scale

QRA and domino events triggered by fire: overview


QRA and domino events triggered by fire: safety barriers

Risk evaluation and management: land use planning (1)


Set risk acceptance criteria for individual risk

Risk evaluation and management: land use planning (2)

Set risk acceptance criteria for societal risk

m = -1 Risk neutral; m = -2 Risk averse

Risk evaluation and management: domino effect (1)

QRA in a chemicals storage plant

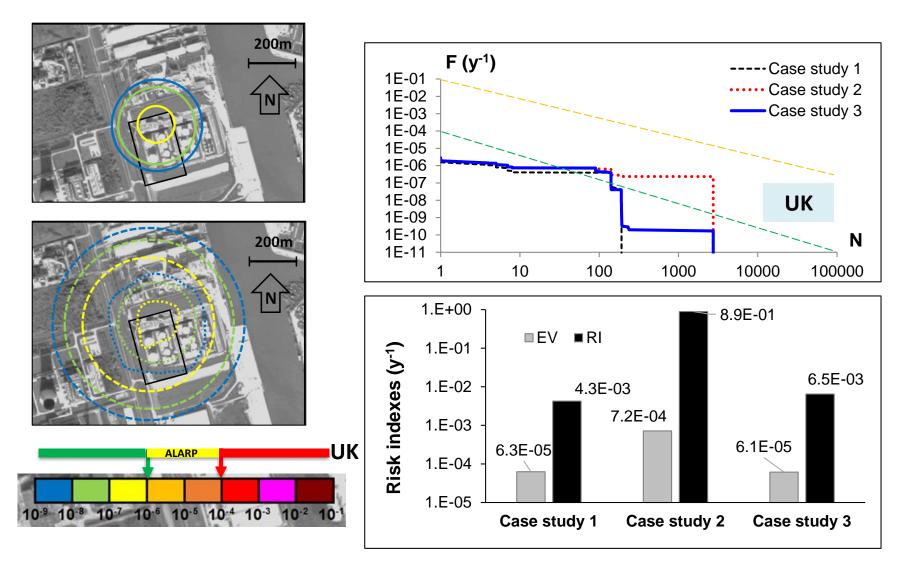
(Case 1) Conventional approach: NO domino

(Case 2) Simplified approach: domino, no protections

(Case 3) Novel approach: domino and safety barriers

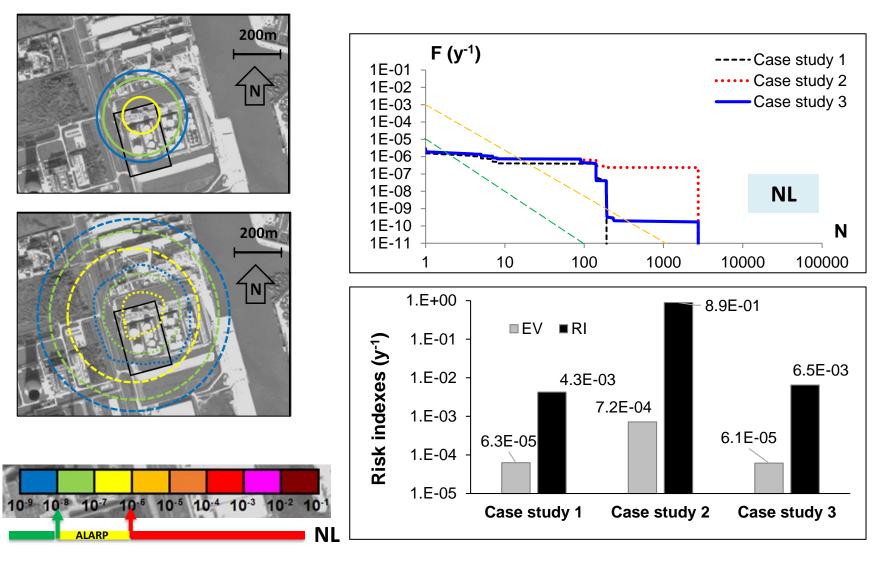
More details in Landucci et al., RESS, 201	7
	•

ID	Diameter (m)	Height (m)	Capacity (m³)	Design pressure (MPa)	Substance	Inventory (ton)
T1	36.0	9.0	9156	0.1	Petroleum crude	6524
T2	36.0	9.0	9156	0.1	Petroleum crude	6524
T3	24.0	9.0	4069	0.1	Hydrogen sulfide sludge	3357
T4	24.0	9.0	4069	0.1	Sodium chloride sol.	4110
T5	24.0	9.0	4069	0.1	Potassium chloride sol.	4110
Т6	24.0	9.0	4069	0.1	Phosphoric acid sol.	4110
V1	3.2	19.4	150	2.0	Propane	67
V2	3.2	12.0	100	2.0	Propane	44


ID	Primary	Radiation	ttf	Probit	Escalation	Secondary	Secondary
	scenario	(kW/m²)	(s)	value	probability	LOC	Scenario
T1	-	90	94	8.42	0.9997	Catastrophic release	Pool fire
Т3	-	15 819 4.43 0.2827 Catastrophic r		Catastrophic release	Toxic dispersion		
V1	-	90	450	5.53	0.7037	Catastrophic release	Fireball
V2	Jet Fire	et Fire		-	-		

Safety barrier	PFD	Effectiveness	T1	тз	V1
Foam-water sprinkler system	5.43×10 ⁻³	0.954	Х	Х	
Pressure Safety Valve (PSV)	1×10 ⁻²	1	х	х	х
Fireproofing coating	0	0.999			х
External emergency intervention	1×10 ⁻¹	0;1 ^b	х	Х	Х

Risk evaluation and management: domino effect (2)


Example of risk reduction achieved trough the implementation of safety barriers

Risk evaluation and management: domino effect (2)

Example of risk reduction achieved trough the implementation of safety barriers

Conclusions

- Quantitative risk assessment in the framework of process facilities was exemplified in "conventional" studies
- Risk metrics and related acceptance criteria in the specific framework are presented
- Based on this framework, detailed methodology for the assessment of domino effect triggered by fire
 - risk reduction due to the safety barriers, availability and effectiveness
- A case study based an actual industrial layout analysis was defined and analyzed

Remarks

- Need of advanced studies and open issues
- Spatial planning in the surrounding of hazardous sources (i.e., chemicals)
- QRA as support to decision making in the selection, application and maintenance of safety barriers and, more in general, industrial facilities

Appendix A

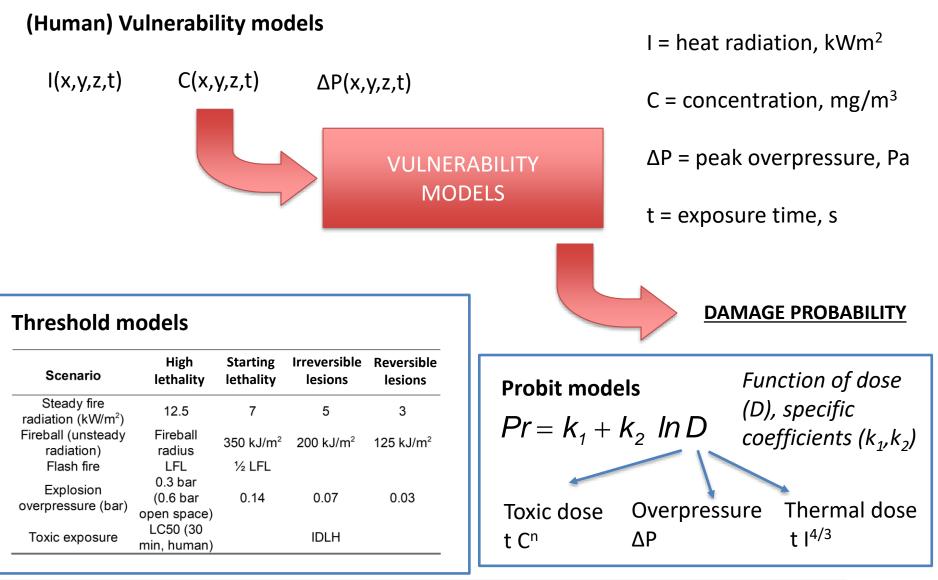
Hazard identification

HAZID

based on brainstorming review of a checklist

comprehension of the highlighted aspects shall be able to identify the

predominant hazards at early design stage


Guide Word	Threat	Top Event	Preventive barriers	Consequence	Recovery/ Preparedness - Measures

HAZOP

Brainstorming structured techniques (congruent and complete) Identify the possible TOP EVENTS, fault chains, detailed design review

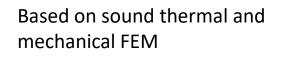
	Deviation		١	Causes	Consequence	Safeguards	Actions
			e	Guide word (Less,			
23	}	L,		process paran temperatu		Università	DI PISA

Appendix B

Appendix C

Equipment vulnerability models

Site-specific probabilistic function


$$\Pr = a + b \ln(TTF)$$

(a = 9.25 and b= -1.85)

Probit constant are derived form site specific factors which take into account the typical time required for effective mitigation (TEM) in process industry fixed installations compared with the time to failure (TTF) of the equipment exposed to fire

TTF is obtained with simplified correlations (Landucci et al. 2009) function of vessel volume (V, m^3) and fire heat load (I, kW/m^2)

Fire exposure model	Correlation for pressurized vessels		
Distant source radiation	$\ln(TTF) = -0.95 \ln(I) + 8.845 V^{0.032}$		
Full engulfment	$\ln(TTF) = -1.29\ln(I) + 10.970 V^{0.026}$		

