

EUROPEAN SPALLATION SOURCE

Fire- and explosion safety programme and a case study on acceptance criteria to open smoke hatches

Fredrik Jörud Senior Fire Protection Engineer

Location

Under construction

Risk assessment - conventional

Risk assessment - radiological

Regulatory Conditions

We have to predict the future fire scenarios!

EUROPEAN SPALLATION SOURCE

Assessment

Experience

Bayseian model – to predict the future

Bayseian updating from a priori to posteori

EUROPEAN SPALLATION SOURCE

Component Type	Prior Freq. OECD μ _Λ	ST. Dev. σ _Λ	#component s	#Events	#Events/ #Component s	μ ^{''} ^	σ" _^	ANL	FEMP	SLAC	LANL	TJNA F	BNL	ORNL	FNAL
High voltage transformer	3.30E-04	9.90E-04	77	1	1.30E-02	3.55E-04	1.01E-03	1							
Diesel generator	4.20E-04	1.26E-03	31.5	0	0.00E+00	4.00E-04	1.20E-03								
Low/Medium Voltage transformer	5.60E-05	1.68E-04	332.5	0	0.00E+00	5.56E-05	1.67E-04								
Electrical cabinet	7.00E-06	2.10E-05	2415	11	4.55E-03	7.28E-06	2.14E-05	1	1	4			4		1
Electrical driven pump	8.70E-06	2.61E-05	997.5	1	1.00E-03	8.77E-06	2.62E-05	1							
Rectifier and inverter	3.30E-05	9.90E-05	28	0	0.00E+00	3.29E-05	9.86E-05								
Heater	6.50E-06	1.95E-05	332.5	1	3.01E-03	6.67E-06	1.97E-05							1	
Fan	2.70E-05	8.10E-05	1060.5	0	0.00E+00	2.69E-05	8.07E-05								
Battery			210	0											
Modulator with capacitor- cabinet			357	0											
Klystron			707	0											
Filter HEPA			35	0											
Filter Carbon				0											
Switchgear				1				1							
Magnets				3				1			1	1			
Computer				1									1		
Cigarette				1						1					
Normal Items				1									1		
Animals	1 Pr	ior		1		1 Pc	osterio	r			1				

Data from Department of Energy

Case study – Can we just open the smoke hatches ?

Dose rates along the cloud central line

Total effective dose: << 0,1mSv

Case closed!?

	<u>Event class</u> (mSv)	Reference value
<	Anticipated events (H2)	0.1
	Unanticipated events (H3)	1.0
	Improbable events (H4A)	20
	Events with multiple failures (H4B)	20
	Highly improbable events (H5)	100

ALARA – Do we really need to open the smoke hatches?

Smoke hatches helps – but still dependent from BA

Is there possibility for worse consequence but less frequent?

How many particles will leave the instrument hall through the smoke hatches?

EUROPEAN SPALLATION

Figure 27 Isometric view of the particles in the hall after 20 minutes

Minimize rescue workers exposure

Rough conclusion for design

EUROPEAN SPALLATION SOURCE

Can not have fire-risks in the facility which are **anticipated** (return time 100 years)......

.....if the consequence may exceed 0,1 mSv to anybody

Statistics is useless if we cannot validate the circumstances

EUROPEAN SPALLATION SOURCE

If data is based on this....

Is no good to justify this.....

EUROPEAN SPALLATION SOURCE

We need a programme....

Deterministic fundamentals...

Explosion...

Prevent occurrance

Minimize the risk, if expl. atmosphere cannot be avoided

Limit consequences

EUROPEAN SPALLATION SOURCE

Thank you

24