
Maximum likelihood fits with TensorFlow

Josh Bendavid, M. Dunser (CERN)
E. Di Marco, M. Cipriani (INFN/Roma)

July 31, 2018

Josh Bendavid (CERN) TensorFlow Fits 1

Introduction

Likelihood for for W helicity/rapidity is quite complex
With preliminary datacards, muon channel only:

∼ 180 M events expected
1444 bins
96 parameters of interest (2 charges x 3 polarization states x
16 |y | bins)
70 nuisance parameters

Fit was previously attempted with Higgs combination tool:
Likelihood constructed/computed with RooFit
Minimization with Minuit2
Gradient for minimization evaluated numerically with some
variation of finite difference method (implemented internally in
Minuit)

Large numbers of events can introduce numerical
precision/stability issues
Major issues with fit convergence, Hessian uncertainties,
likelihood scans (standard MINOS implementation ∼
completely unusable in this setting)

Josh Bendavid (CERN) TensorFlow Fits 2

What is TensorFlow?

TensorFlow is a library for high performance numerical
computation

Typical workflow:

Construct a computational graph using TensorFlow library in
python
Execute graph (transparent-to-user compilation and execution
on threaded/vectorized CPU’s, GPU’s, etc)

Originally developed at Google for deep learning applications

Efficient analytical computation of gradients, needed for
Stochastic Gradient Descent in training of deep neural
networks

Josh Bendavid (CERN) TensorFlow Fits 3

Likelihood Construction in TensorFlow

Any template shape fit can be expressed as a many-channel counting
experiment

Negative log-likelihood can be written as

L =
∑
ibin

(
−nobs

ibin ln nexp
ibin + nexp

ibin

)
+

1

2

∑
ksyst

(
θksyst − θ0ksyst

)2
(1)

nexp
ibin =

∑
jproc

rjprocn
exp
ibin,jproc

∏
ksyst

κ
θksyst
ibin,jproc,ksyst (2)

nexp
ibin,jproc is the expected yield per-bin per-process

rjproc is the signal strength multiplier per-process

θksyst are the nuisance parameters associated with each systematic
uncertainty

κibin,jproc,ksyst is the size of the systematic effect per-bin, per-process,
per-nuisance

(The above assumes all shape uncertainties are implemented as

log-normal variations on individual bin yields, which is appropriate for e.g.

PDF/QCD scale variations, but not for things like momentum

scale/resolution variations)

Josh Bendavid (CERN) TensorFlow Fits 4

Likelihood Construction in TensorFlow

Full contents of datacards can be represented by a few numpy
arrays:

nbin × nproc 2D tensor for expected yield per-bin per-process

nbin × nproc × nsyst 3D tensor for κ (actually lnκ) values

parameterizing size of systematic effect from each nuisance

parameter on each bin and process (actually two tensors, one each

for lnκup and lnκdown to allow for asymmetric uncertainties)

POI’s and nuisance parameters implemented as TensorFlow
Variables

Full likelihood constructed as TensorFlow computation graph
with observed data counts as input

Some details:
Precompute as much as possible with numpy arrays which are
compiled into the graph as constants
Double precision everywhere

Offsetting of likelihood in optimal placement within the graph to

minimize precision loss

Josh Bendavid (CERN) TensorFlow Fits 5

Minimization

Minimization in TensorFlow normally done with variations on
Stochastic Gradient Descent, appropriate for very large
number of parameters in deep learning (10’s of thousands to
millions)

For O(100’s) of parameters, more appropriate to use
second-order minimization techniques

Hessian can be computed analytically but still slow and not
very optimal → use quasi-newton methods which approximate
hessian from change in gradient between iterations (the
MIGRAD algorithm in Minuit/Minuit2 belongs to this class of
algorithms, as does BFGS)

Josh Bendavid (CERN) TensorFlow Fits 6

Minimization

While the likelihood has a global minimum and is well
behaved in the vicinity, it is (apparently) NOT convex
everywhere in the parameter space

BFGS-type quasi-Newton methods are not appropriate since the
Hessian approximation can never capture non-convex features
Line search is not a good strategy even with a well-approximated
(or exact) Hessian, since this will tend to get stuck or have slow
convergence near saddle points/in non-convex regions

Major source of non-convexity is the polynomial interpolation of lnκ

for asymmetric log normal uncertainties

Using trust-region based minimizer with SR1 approximation
for hessian, as implemented in SciPy (minimal adaptation
required for existing TensorFlow-SciPy interface)

Bonus: this also supports arbitrary non-linear constraints
Caveat: Only likelihood and gradient evaluation done in
Tensorflow, rest of minimizer is in python/numpy

Josh Bendavid (CERN) TensorFlow Fits 7

Implementation

Prototype implementation in Higgs combination package,
re-using datacard parsing code

Tensorflow graph for likelihood constructed from standard
datacards+histograms for template shape analyses, including
shape and normalization uncertainties

Asimov and random toys supported (bayesian or frequentist
treatment of nuisance parameters)

Hessian uncertainties/covariance matrix computed
(analytically from tensorflow graph)

Profile likelihood scans implemented using constraints on
parameter values (allows change of basis/parameterization in
principle without reparameterizing POI’s)

Josh Bendavid (CERN) TensorFlow Fits 8

Implementation

Direct determination of likelihood contours for MINOS-type
uncertainties:

For the 1 σ uncertainty along direction ∆r , minimize
Lerr = −∆r · (x − x0) subject to constraint on negative
log-likelihood L− L0 = 0.5
This works for n-dimensional contours as well (for 2D contours
need to scan in one angle)

Josh Bendavid (CERN) TensorFlow Fits 9

Implementation

Current version available here:
https://github.com/bendavid/HiggsAnalysis-CombinedLimit/tree/tensorflowfit_10x

Requires SciPy 1.1 (available in CMSSW 10 2 0 pre6 and
later)

Two scripts:

text2tf.py: Create tensorflow graph from
datacards/histograms (outputs “.meta” file containing full
graph definition and default values/constants)
combinetf.py: Run fits/toys/scans with graph

Josh Bendavid (CERN) TensorFlow Fits 10

https://github.com/bendavid/HiggsAnalysis-CombinedLimit/tree/tensorflowfit_10x

Illustrative Example

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

 ln
 L

∆
-2

2−

0

2

4

6

8

10
: 1.002

0
µ

 0.990σ-1
 1.015σ+1

(a) Combine w/ GSL-BFGS

0.9 0.95 1 1.05 1.1
Wplus_left_Wplus_left_mu_Ybin_0

0

1

2

3

4

5

6

7

8 ln
 L

∆
-2

GraphGraph

(b) TF+SciPy SR1-TR

r = 1.0000 +0.0375 -0.0345

From current version of W helicity-rapidity cards, for µ+

channel only

n.b. vertical lines/asymmetric uncertainties on right are from
direct contour determination rather than scan

Josh Bendavid (CERN) TensorFlow Fits 11

Some Performance Tests

Using current W helicity cards (1444 bins, 96 POI’s, 70 nuisance

parameters)

Likelihood Likelihood+Gradient Hessian

Combine, TR1950X 1 Thread 10ms 830ms -
TF, TR1950X 1 Thread 70ms 430ms 165s

TF, TR1950X 32 Thread 20ms 71ms 32s
TF, 2x Xeon Silver 4110 32 Thread 17ms 54ms 24s

TF, GTX1080 7ms 13ms 10s
TF, V100 4ms 7ms 8s

Single-threaded CPU calculation of likelihood is 7x slower in Tensorflow
than in Roofit (to be understood and further optimized)
Gradient calculation in combine/Minuit is with 2n likelihood evaluations
for finite differences (optimized with caching)
Xeons are lower clocked than Threadripper, but have more memory
channels and AVX-512
Back-propagation calculation of gradients in Tensorflow is much more
efficient (in addition to being more accurate and stable)

Best-case speedup is already a factor of 100Josh Bendavid (CERN) TensorFlow Fits 12

Some Performance Tests: Minimization

Minimization
L+Gradient scipy trust-constr scipy cpu usage

TF, TR1950X 32 Thread 71ms/call 200ms/iteration 2107%
2x Xeon Silver 4110 32 Thread 54ms/call 237ms/iteration 2587%

TF, GTX1080 (+TR1950X) 13ms/call 84 ms/iteration 1081%
TF, V100 (+2x Xeon 4110) 7ms/call 78ms/iteration 1558%

Each iteration of the SR1 trust-region algorithm requires
exactly 1 likelihood+gradient evaluation

Significant amount of processing power (and CPU bottleneck)
in scipy+numpy parts of the minimizer (non-trivial linear
algebra)

Josh Bendavid (CERN) TensorFlow Fits 13

Further Optimizing Minimization

Current SR1 trust-region implementation in scipy based on
conjugate gradient method for solving the quadratic
subproblem → large number of inexpensive sub-iterations
which don’t parallelize well

Have implemented a quasi-newton trust region minimizer
natively in tensorflow (based on algorithm 4.3 in Nocedal and
Wright “Numerical Optimization”) and adapted from parts of
several minimizers in scipy

Based on iterative near-exact solution of the trust region
problem (fewer number of sub-iterations with heavier matrix
algebra per iteration possibly better suited to GPU’s)

Some inefficiencies and numerical protections to be added

Also have a tensorflow implementation of trust region with
conjugate gradient methods, closely following “trust-ncg” in
scipy, but replacing exact hessian vector products with
quasi-newton approximation

Josh Bendavid (CERN) TensorFlow Fits 14

Some Performance Tests: Minimization

Minimization
L+Gradient scipy trust-constr TF TrustSR1Exact

TF, TR1950X 32 T 71ms/call 200ms/iteration 89ms/iteration
2x Xeon Silver 4110 32 T 54ms/call 237ms/iteration 63ms/iteration

TF, GTX1080 (+TR1950X) 13ms/call 84ms/iteration 55ms/iteration
TF, V100 (+2x Xeon 4110) 7ms/call 78ms/iteration 51ms/iteration

Substantial reduction of overhead relative to bare
likelihood+gradient call

Relative remaining overhead much larger on GPU

n.b, this fit converges in about 500 iterations with the
TrustSR1Exact algorithm, about 25s/fit with GPU

Using gradient descent methods available in Tensorflow
requires O(10k) iterations

Josh Bendavid (CERN) TensorFlow Fits 15

Linear Algebra Aside

Fastest way to check if a symmetric matrix is positive definite
is to attempt the Cholesky decomposition A = LL∗ (with L
lower-triangular) and check if it succeeds

In Tensorflow this produces a fatal error in case the matrix is
not positive-definite

Proper solution is to adapt the corresponding tensorflow
operation to return the status together with the factorization
(which is allowed to be nonsense in case of failure)

Underlying Eigen implementation already supports this, so
should be straightforward

Current version of TensorFlow-based minimizer avoids this by
performing a more expensive eigen-decomposition

Josh Bendavid (CERN) TensorFlow Fits 16

Other Optimization Opportunities

Detailed study of scaling of minimization
overhead/performance with number of free parameters is
needed

Most likely there is further room for improvement with better
algorithms/ones more suited for GPU’s

Efficiency of specific matrix factorization steps to be carefully
checked/profiled

Batch evaluation of likelihood feasible/useful? (parallel
minimization algorithm? Multiple toys in parallel?)

Implement simpler χ2/Gaussian approximation to likelihood
for high statistics cases?

Josh Bendavid (CERN) TensorFlow Fits 17

Memory Consumption

Not so good: Memory consumption in this example goes from
500MB in combine to 4.5GB in the tensorflow implementation
(albeit not increasing with the number of threads)

Experimental branch with completely refactored
storage/loading of large arrays (using hdf5 files with chunked
storage and compression):

Memory usage on the same test case back down to 700MB
CPU/GPU performance to be evaluated
Memory usage for very large test case with 78 nuisances, 1122
processes, 4452 bins at about 6.5GB → only slightly larger
than raw array size in memory for a single copy
Sparse tensor representation now available as well → above
model reduced to 1.0GB memory consumption

Josh Bendavid (CERN) TensorFlow Fits 18

Optimizing Memory Consumption

To optimize memory consumption for graphs with large
constants:

Don’t include large constants in the graph definition (there is
also a hardcoded 2GB limit in doing so)
Don’t read large numpy arrays from disk (unless using
memmapping, but then can’t use compression)
Don’t store large constants in tf Variables (because it’s
apparently impossible to initialize them without having at least
a second copy of the contents in memory)

Josh Bendavid (CERN) TensorFlow Fits 19

Optimizing Memory

Adopted solution
HDF5 arrays with chunked storage and compression
Numpy arrays are stored as flattened HDF5 arrays to allow
reading chunk by chunk while preserving the order of the array
and maintaining flexibility in choice of chunk size
Read chunk by chunk using tf data API with tf py func to
interface with h5py
Use batching to reassemble full array into a single tensor, then
use the in-memory cache so the read only happens once
(reshaping and possible truncation of the overflow from the
last batch have near-zero cpu or memory footprint)
Text+root histogram conversion has been adapted to write
hdf5 arrays instead of a tf graph with in-built constants

Current (experimental) branch:
https://github.com/bendavid/HiggsAnalysis-CombinedLimit/tree/tensorflowfit_h5py_sparse

(text2tf.py script is replaced with text2hdf5.py)
Optional sparse tensor representation (–sparse option in
text2hdf5.py)

Josh Bendavid (CERN) TensorFlow Fits 20

https://github.com/bendavid/HiggsAnalysis-CombinedLimit/tree/tensorflowfit_h5py_sparse

Cross-validation with Combine

Direct comparison with combine using the same cards for a
simpler example

https://indico.cern.ch/event/735097/contributions/3031878/attachments/1664185/2667224/

2018-06-07-wmass.pdf

Josh Bendavid (CERN) TensorFlow Fits 21

https://indico.cern.ch/event/735097/contributions/3031878/attachments/1664185/2667224/2018-06-07-wmass.pdf
https://indico.cern.ch/event/735097/contributions/3031878/attachments/1664185/2667224/2018-06-07-wmass.pdf

Provoking Bad Behaviour in Minuit

Artificially small uncertainties from Hesse can appear even in very simple
examples with large number of events (in this case, simple counting
experiment with one signal process and one lnN systematic uncertainty
which should not be constrained at all)

Some work ongoing from Nick and Andrew to improve these cases

Josh Bendavid (CERN) TensorFlow Fits 22

Sample Results in Progress

W helicity/rapidity measurement foreseen as part of a
comprehensive paper on W production at 13 TeV, covering
double-differential cross sections in lepton pT and |η|, as well
as the W production cross section differential in rapidity and
decomposed into left, right, and longitudinal polarizations
(equivalent to measuring the unpolarized cross section, plus
A0 and A4 angular cofficients differential in rapidity)

Many technically challenging fits involved, large numbers of
toys eventually needed to validate statistical properties etc

Showing an assortment of results (all are work-in-progress on
the physics side, but things are technically working well)

Josh Bendavid (CERN) TensorFlow Fits 23

Likelihood Scans

Josh Bendavid (CERN) TensorFlow Fits 24

Comparison of Different Uncertainty Methods

Josh Bendavid (CERN) TensorFlow Fits 25

Covariance Matrices

Josh Bendavid (CERN) TensorFlow Fits 26

Normalized Cross Sections (Expected)

Note that post-fit cross section is not simply signal strength µ times
prefit cross section

Nuisance parameters (e.g. for theory uncertainties may modify the cross
section)

Handled with an implementation of channel masking and normalization

tracking following the combine implementation

Josh Bendavid (CERN) TensorFlow Fits 27

Double differential lepton Charge Asymmetry (Expected)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

ηgen muon

26

28

30

32

34

36

38

40

42

44

46

 [G
eV

]
T

ge
n

m
uo

n
p

0.1

0.15

0.2

0.25

0.3

A
sy

m
m

et
ry

νµ →Charge asymmetry: W

(a) Charge Asymm.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

ηgen muon

26

28

30

32

34

36

38

40

42

44

46

 [G
eV

]
T

ge
n

m
uo

n
p

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

A
sy

m
m

et
ry

 u
nc

er
ta

in
ty

νµ →Charge asymmetry uncertainty: W

(b) Uncertainty

Josh Bendavid (CERN) TensorFlow Fits 28

Conclusions

Construction of likelihood for binned template fits
implemented in Tensorflow

Reasonably stable implementation with basic functionality
available, already usable for analysis, with important gains in
speed and numerical stability for complex cases

Additional statistical features to be implemented as needed
(e.g. bin-by-bin template uncertainties)

No plans so far to extend to analytic PDF’s (not planning a
full re-implementation of RooFit)

Ongoing studies and work to further understand and optimize
performance on GPU’s

Ultimate limits/achievable scale to be further understood

Josh Bendavid (CERN) TensorFlow Fits 29

