Determining the Majorana nature of neutrino through patterns of $|\Delta B|$ =2 processes

Xinshuai Yan

Department of Physics and Astronomy
University of Kentucky
Lexington, KY

6th PIKIO Meeting University of Notre Dame Oct 6, 2018

Based on two papers in collaboration with Susan Gardner:

[S.Gardner and X.Y., $\underline{\text{arXiv:}1808.05288}$ and PRD 97 056008 (2018) $\underline{\text{arXiv:}1710.09292}$]

B-L violation

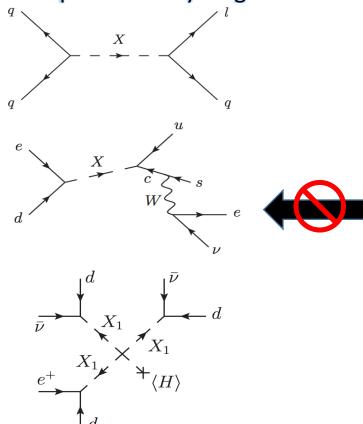
➤ In the Standard Model (SM), neither baryon number (B) nor lepton number (L) is conserved, but B-L is. Thus the observation of B-L violation reveal the existence of physics BSM.

B-L violation:

In lepton sector: Observation of neutrinoless double $(0v\beta\beta)$ decay shows that L is broken by two units. That is to say that neutrino has an effective Majorana mass.

[J. Schechter and J. W. Valle (2012)]

- ☐ In quark sector:
 - Neutron-antineutron oscillation ---- Spontaneous.


[Marshak and Mohapatra (1980)]

- Dinucleon decay (in nuclei) --- limited by finite nuclei density.
- Nucleon-antinucleon conversion ---- Mediated by an external source.

[Susan Gardner and X. Y., PRD (2018)]

Scalar-fermion interactions with no proton decay

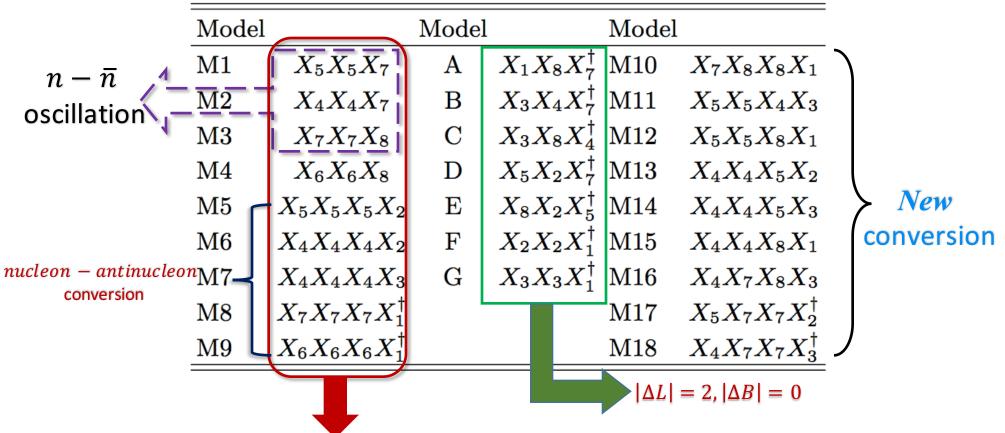
Tree level proton decay diagrams

[Arnold, Fornal, and Wise (2013)]

Possible interactions between scalar particle X and SM fermions:

Scalar	SM Representation	В	L	Operator(s)	$[g_i^{ab}?]$
X_1	(1, 1, 2)	0	-2	Xe^ae^b	[S]
X_2	(1, 1, 1)	0	-2	XL^aL^b	[A]
X_3	(1, 3, 1)	0	-2	XL^aL^b	[S]
X_4	$(\bar{6}, 3, -1/3)$	-2/3	0	XQ^aQ^b	[S]
X_5	$(\bar{6},1,-1/3)$	-2/3	0	XQ^aQ^b, Xu^ad^b	[A,-]
X_6	(3, 1, 2/3)	-2/3	0	Xd^ad^b	[A]
X_7	$(\overline{6},1,2/3)$	-2/3	0	Xd^ad^b	[S]
X_8	$(\bar{6}, 1, -4/3)$	-2/3	0	Xu^au^b	[S]
X_9	(3, 2, 7/6)	1/3	-1	$X\bar{Q}^a e^b, XL^a \bar{u}^b$	[-,-]

E.g.,


$$g_1^{ab} X_1(e^a e^b)$$

[Arnold, Fornal, and Wise (2013) Susan Gardner and X. Y. (2018)]

Note these interactions do not break B and L!

Minimal interactions that break B and/or L

[Susan Gardner and X. Y. (2018)]

Appeared in [Arnold, Fornal, and Wise (2013)]

Quark level $n - \bar{n}$ oscillation

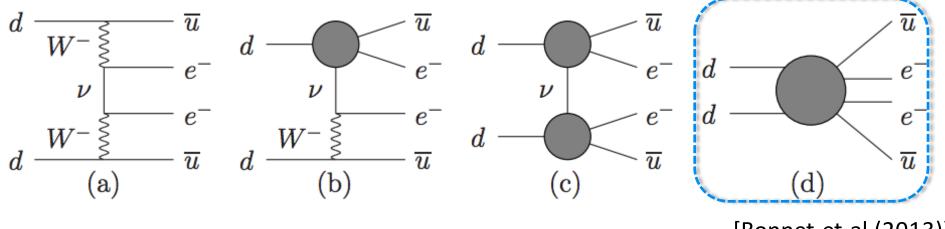
There are 4 independent quark level $n - \bar{n}$ oscillation operators that respect SM gauge symmetry:

$$(O_1)_{RRR}, (O_2)_{RRR}, (O_3)_{LRR}, (O_3)_{LLR}$$

[Rao and Shrock (1982) W. Caswell et al (1983) M. Buchoff et al (2012)]

□ Note: M1 yields the operator $(\mathcal{O}_2)_{RRR}$, M2 yields $(\mathcal{O}_3)_{LLR}$, M3 yields $(\mathcal{O}_1)_{RRR}$.

Quark level
$$n - \bar{n}$$
 oscillation operators with $SU(3) \otimes U_{em}(1)$.
$$(O_{2})_{\chi_{1}\chi_{2}\chi_{3}} = [u_{\chi_{1}}^{\top\alpha}Cu_{\chi_{1}}^{\beta}][u_{\chi_{2}}^{\top\gamma}Cd_{\chi_{2}}^{\delta}][u_{\chi_{3}}^{\top\rho}Cd_{\chi_{3}}^{\sigma}](T_{s})_{\alpha\beta\gamma\delta\rho\sigma},$$


$$(O_{2})_{\chi_{1}\chi_{2}\chi_{3}} = [u_{\chi_{1}}^{\top\alpha}Cd_{\chi_{1}}^{\beta}][u_{\chi_{2}}^{\top\gamma}Cd_{\chi_{2}}^{\delta}][d_{\chi_{3}}^{\top\rho}Cd_{\chi_{3}}^{\sigma}](T_{s})_{\alpha\beta\gamma\delta\rho\sigma},$$

$$(O_{3})_{\chi_{1}\chi_{2}\chi_{3}} = [u_{\chi_{1}}^{\top\alpha}Cd_{\chi_{1}}^{\beta}][u_{\chi_{2}}^{\top\gamma}Cd_{\chi_{2}}^{\delta}][d_{\chi_{3}}^{\top\rho}Cd_{\chi_{3}}^{\sigma}](T_{s})_{\alpha\beta\gamma\delta\rho\sigma},$$

$$(T_{s})_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\gamma}\epsilon_{\sigma\beta\delta} + \epsilon_{\sigma\alpha\gamma}\epsilon_{\rho\beta\delta} + \epsilon_{\rho\beta\gamma}\epsilon_{\sigma\alpha\delta} + \epsilon_{\sigma\beta\gamma}\epsilon_{\rho\alpha\delta}$$

$$(T_{s})_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\sigma\alpha\beta}\epsilon_{\rho\gamma\delta}.$$
[Rao and Shrock (1982)]
$$(T_{a})_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\sigma\alpha\beta}\epsilon_{\rho\gamma\delta}.$$

Mechanisms of $0\nu\beta\beta$ decay

- [Bonnet et al (2013)]
- □ (a)-(c): A light neutrino is exchanged --- "long-range" diagrams;
- ☐ (d): Mediated by heavy particles --- "short-range" diagram.

Only models A, B, and C can produce $\pi^-\pi^- \rightarrow e^-e^-$ decay, which correspond to the second case of decay topology "T-II-3" in Bonnet et al (2013).

Processes of interest generated by the models

We list the $|\Delta L| = 2$ and $|\Delta B| = 2$ processes generated by the models in which only first-generation fermion are involved.

$nar{n}$	$\pi^-\pi^- \to e^-e^-$	$e^-p o \bar{\nu}_{\mu,\tau} \bar{n}$	$e^-p o \bar{ u}_e \bar{n}/e^+p$	$e^-p o e^+ \bar{p}$
M1	A	M5	M7	M10
M2	$\mathrm{B}^{(*)}$	M6	M11	M12
M3	$\mathrm{C}^{(*)}$	M13	M14	M15
			M16	

^(*) indicates that a weak isospin triplet of $|\Delta L| = 2$ processes can appear.

Patterns of $|\Delta \mathbf{B}| = 2$ & Majorana neutrino

$oxed{nar{n}}$	$\pi^-\pi^- \to e^-e^-$	$e^- p \to \bar{\nu}_{\mu,\tau} \bar{n}$	$e^-p o \bar{\nu}_e \bar{n}/e^+p$	$e^-p o e^+ \bar{p}$
M1	A	M5	M7	M10
M2	$B^{(*)}$	M6	M11	M12
M3	$C^{(*)}$	M13	M14	M15
			M16	

Model	$n\bar{n}?$	$e^- n \rightarrow e^- \bar{n}$?	$e^-p \to \bar{\nu}_X \bar{n}$?	$e^-p \to e^+\bar{p}$?	$0\nu\beta\beta$?
M3	Y	N	N	Y	Y [A]
M2	Y	Y	Y	Y	Y [B]
M1	Y	Y	Y	N	? [D]
_	N	N	Y	Y	? [C?]

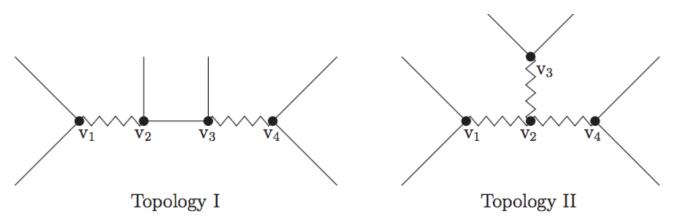
 \square We have showed that $e^-n \to e^-\bar{n}$ can not appear if $n - \bar{n}$ oscillation is mediated through $(\mathcal{O}_1)_{RRR}$ \longrightarrow Distinguish M3 from M1 and M2

[Susan Gardner and X. Y., PRD (2018)]

One example: No $e^-n \rightarrow e^-\bar{n}$ & Yes $n\bar{n}$,

- M3 has scalar content X_7 and X_8 ;
- $e^-p \rightarrow e^+\bar{p}$ only => M10, M12, orM15. Common scalar content: X_1

M3	X ₇ X ₇ X ₈	M10	$X_7X_8X_8X_1$
		M12	$X_5X_5X_8X_1$
Α	$X_1X_8X_7^{\dagger}$	M15	$X_4X_4X_8X_1$


$$\pi^-\pi^- \rightarrow e^-e^- \text{ decay}$$

Summary

- Motivated by search for new physics, we explore simple BSM scalar models with B, L, and B-L violation. For phenomenological viability, we permit no proton decay for these models.
- Various $|\Delta B| = 2$ and $|\Delta L| = 2$ processes, such as $n\bar{n}$ oscillation and nucleon-antinucleon conversion and $0v\beta\beta$ decay, can be studied within these models.
- We show that the observation of $n\bar{n}$ oscillations and of particular nucleon-antinucleon conversion processes can reveal the Majorana nature of the neutrino.

Backup Slides

The two basic tree-level topologies realizing d=9 $0v\beta\beta$ decay operator

	$\overline{\hspace{1cm}}$ Mediator $(Q_{ m em}, Q_{ m colour})$					
#	Decomposition	S or V_{ρ}	S' or V'_{ρ}	S'' or V''_{ρ}	Models/Refs./Comments	
1	$(\bar{u}d)(\bar{u}d)(\bar{e}\bar{e})$	(+1, 1)	(+1, 1)	(-2, 1)	Addl. triplet scalar [69]	
					LR-symmetric models [40, 42]	
		(+1, 8)	(+1, 8)	(-2, 1)		
2	$(\bar{u}d)(\bar{u}\bar{e})(\bar{e}d)$	(+1, 1)	(-1/3, 3)	$(-2/3, \overline{\bf 3})$		
		(+1, 8)	(-1/3, 3)	$(-2/3, \overline{\bf 3})$		[Bonnet et al (2013)]
3	(ar uar u)(dd)(ar ear e)	$(+4/3, \overline{\bf 3})$	(+2/3, 3)	(-2, 1)	only with V_{ρ} and V'_{ρ}	[
		(+4/3, 6)	$(+2/3, \overline{\bf 6})$	(-2, 1)	•	
4	$(ar{u}ar{u})(ar{e}d)(ar{e}d)$	$(+4/3, \overline{\bf 3})$	$(-2/3, \overline{\bf 3})$	$(-2/3, \overline{\bf 3})$	only with V_{ρ}	
		(+4/3, 6)	$(-2/3, \overline{\bf 3})$	$(-2/3, \overline{\bf 3})$		
5	$(ar{u}ar{e})(ar{u}ar{e})(dd)$	(-1/3, 3)	(-1/3, 3)	(+2/3, 3)	only with V''_{ρ}	
		(-1/3, 3)	(-1/3, 3)	$(+2/3, \overline{6})$	[70,71]	10

Simple BSM scalar models with no proton decay

Develop simple models with new scalar gauge bosons whose interactions:

- Respect SU(3) X SU(2) X U(1) symmetry ---- SM symmetry;
- ➤ Have mass dimension 3 and 4 ---- Renormalizable;
- ➤ Break B or/and L;
- Do not permit proton decay at tree level;

and study their various phenomenology.

Proton decay:

- Has never been observed!
- ❖ Impose severe constraints on new physics, e.g., proton life time for $p \rightarrow e^+ \pi^0$ mode 8.2 X 10^{33} yr. [H. Nishino et al. (Super-K) (2009)]

This talk is based on two papers in collaboration with Susan Gardner:

[S.Gardner and X.Y arXiv:1808.05288, PRD 97 056008 (2018)]

Cross Section Estimate

Experimental limits can be translated to scalar-mass-coupling exclusion plots (cf. dark photons!)

scalar couplings [4, 56–59]. Models that support $e^-p \to e^+\bar{p}$ have low-energy operators whose quark parts correspond to those found in $n-\bar{n}$ oscillations under $u \leftrightarrow d$ exchange. Exploiting this and a MIT bag model [60, 61] computation of $\langle \bar{n} | (\mathcal{O}_1)_{RRR} | n \rangle$ [46, 62] yields

$$\sigma \sim 1.5 \times 10^{-5} (g_7^{11})^6 (\lambda_8 g_1^{11})^2 \left(\frac{5 \,\text{GeV}}{M_{X_7}}\right)^{12} \left(\frac{1 \,\text{GeV}}{M_{X_1}}\right)^4 \text{ab}$$
 (6)

in model M8 for an electron beam energy of 155 MeV with a fixed target [63]. A broad range of possible scalar masses and couplings exists.