

Long-Lived Particles at the LHC with Timing information

Jia Liu (University of Chicago)

Based on work with Zhen Liu and Liantao Wang, 1805.05957

6th PIKIO meeting @University of Notre Dame, October 06, 2018

Long-Lived Particles at the LHC with Timing information

- Long-lived particles (skip)
- Timing information at detector
- Long-lived + Timing

Detector with timing information

Detector needs timing information to record event

- Bunch crossing: 25 ns
- Bunch length: 30 cm~ 1 ns
- Collision is a time extended event.
- Pile-up events: 20~100 per bunch, time spread~190ps
- Detector needs to record time in each 25 ns window, but suffers from pile-up

Detector with timing information

Detector needs timing information to record event

- Bunch crossing: 25 ns
- Bunch length: 30 cm~ 1 ns
- Collision is a time extended event.
- Pile-up events: 20~100 per bunch, time spread~190ps
- Detector needs to record time in each 25 ns window, but suffers from pile-up

Timing upgrade benefits

- Reduction of pileup tracks
- Suppress pileup jet
- Better missing energy recon.
- B-tagging and tau charged isolation
- Higgs diphoton vertex location

Density (events/mm) 1.9 = 200 PU

(ns)

Timing upgrade proposal for ATLAS and LHCb

- ATLAS is also considering adding a High Granularity Timing Detector (HGTD) at |z|=3.5m and 2.4<|eta|<4

 ATLAS: 1804.00622
 - With ~30 ps timing resolution, enable 4d reconstruction for reducing pileup
- LHCb: upgrade timing for Vertex Locator (VELO), high granularity ECAL and Torch detector,
 - forward, with ~30ps timing resolution
 - B0->pi+ pi-

LHCb: <u>1808.08865</u>

Motivation for our work

- LHC 2 year long shut down from Dec 2018
 - PHASE 2 upgrade: timing detector (~30 ps)
 - How to relate it to new physics?

Motivation for our work

- Previous work
 - Time of flight in (meta-)stable charged particle searches,

 PAS-EXO-16-036, ATLAS:1604.04520, J. Ellis:ph/0607261)

 (CMS: 1305.0491,
 - Time delay parameters adopted in non-pointing photon searches (CDF: ph/0407022, physics/0512171, ATLAS:1409.5542)
 - (very loosely) in the stopped particle searches (CMS:1801.00359)
 - Time of flight in neutral particle search for mass determination (CMS MTD Phase 2 upgrade)
 - Backward flying particle from LLP (1706.07407)
- Our work
 - Use timing to suppress SM background in LLP search
 - Fits for generic LLP, e.g. decay to jets

 $(p_chi0 + p_Z)^2 = 0$

Long lived particle (LLP) detection

• Question: if LLP has lifetime 10km, and we have a finite size detector e.g. 10 m. Where to put the detector?

Motivation for LLP search at LHC

 Question: if LLP has lifetime 10km, and we have a finite size detector e.g. 10 m. Where to put the detector?

$$N_{\rm obs} \approx N_{\rm prod}^{\rm sig} P_{\rm in}$$

Pin: The probability to fall in the detector

$$\begin{split} P_{\mathrm{in}} &= \frac{1}{4\pi} \int_{\Delta\Omega} d\Omega \int_{L_1}^{L_2} dL \frac{1}{d} e^{-L/d} \\ &\approx \frac{\Delta\Omega}{4\pi} \int_{L_1}^{L_2} dL \frac{1}{d} e^{-L/d} \\ &= \frac{\Delta\Omega}{4\pi} \left(e^{-L_1/d} - e^{-L_2/d} \right) \end{split}$$
 L1, L2 << d better close due to solid angle conoral purpose.

10

general purpose

detectors!

Time delay from LLP and detection proposal

$$\Delta t = \frac{\ell_X}{\beta_X} + \frac{\ell_a}{\beta_a} - \frac{\ell_{\rm SM}}{\beta_{\rm SM}}$$
$$\beta_a \simeq \beta_{\rm SM} \simeq 1$$

- CMS timing layer: 1.2 m~ 4ns
- h-> X X, with mX = 50 GeV
- X boost ~ (mh/2)/50GeV, v~0.55
- Time delay ~ 4ns (1/v -1)=3.2ns

- Proposal: LLP decay before timing layer
 - CMS MTD search: LT1 = 0.2 m, LT2 = 1.2 m (MTD = MIP Timing Detector)
 - ATLAS MS search (hypothetical): LT1 = 4.2 m, LT2 = 10.6m (MS = Muon Spectrometer)

LLP signal and physics model

$$\Delta t = \frac{\ell_X}{\beta_X} + \frac{\ell_a}{\beta_a} - \frac{\ell_{\rm SM}}{\beta_{\rm SM}}$$
$$\beta_a \simeq \beta_{\rm SM} \simeq 1$$

- Physics model:
 - SigA (resonance): SM Higgs decay to two LLPs, e.g. glueball
 - SigB (pair prod): GMSB SUSY long lived neutralino

$$\begin{split} & \text{SigA}: \ pp \to h + j, \ h \to X + X, \ X \to \text{SM}, \\ & \text{SigB}: pp \to \tilde{\chi}\tilde{\chi} + j, \ \tilde{\chi}^0_1 \to h + \tilde{G} \to \text{SM} + \tilde{G}. \end{split}$$

- Time stamping the primary vertex
 - ISR object (jet, lepton, photon)
 - Prompt decay object (squark)

Motivation for timing cut on LLP

- SM background time spread (Gaussian):
 - Hard collision: ~30 ps
 - Pile-up: ~190 ps
- Use timing cut to suppress background
 - Method: a low pt ISR jet + timing delayed object (no track near PV)
 - Lower pt/MET cut threshold
 - Due to low bkg, use one LLP decay
 - Achieve better sensitivity at large lifetime

- Other SM backgrounds (time uniform):
 - Interactions with materials, cosmic rays, beam halo, satellite beam etc
 - Existing mature veto mechanism (e.g. non-pointing photons, traditional DV search)
- More handles from LLP signal
 - DV, MET at PV, ISR lepton, two delayed objects (if Gaussian fail in the tail)...
 - Help to suppress the bkg

BKG estimation (SV) for LLP with timing

	L_{T_2}	L_{T_1}	Trigger	$\epsilon_{ m trig}$	$\epsilon_{ m sig}$	$\epsilon_{ m fake}^{j}$	Ref.
MTD	1.17 m	0.2 m	DelayJet				
MS	10.6 m	4.2 m	MS RoI	0.25, 0.5	0.25	5×10^{-9}	[22]

$$ext{MTD}: N_{ ext{bkg}}^{ ext{SV}} = \sigma_{ ext{j}} \mathcal{L}_{ ext{int}} \epsilon_{ ext{trig}}^{ ext{MTD}} \epsilon_{ ext{fake}}^{j, ext{MTD}} pprox 1 imes 10^{11}$$

MS:
$$N_{\rm bkg}^{\rm SV} = \sigma_{\rm j} \mathcal{L}_{\rm int} \epsilon_{\rm trig}^{\rm MS} \epsilon_{\rm fake}^{j,\rm MS} \approx 4 \times 10^5,$$

- Hard collision BKG: detector time resolution ~30 ps
 - MTD (30ps) cut: Deltat > 1 ns
 - MS (30ps) cut: Deltat > 0.4 ns
 - BKG(SV) << 1

- The detector time resolution for MS can be downgraded to hundreds of ps
 - MS (200ps) cut: Deltat > 1ns
 - BKG(MS-SV) ~ 0.11

BKG estimation (PU) for LLP with timing

	L_{T_2}	L_{T_1}	Trigger	$\epsilon_{ m trig}$	$\epsilon_{ m sig}$	$\epsilon_{ m fake}^{j}$	Ref.
MTD	1.17 m	0.2 m	DelayJet	0.5	0.5	10^{-3}	[12]
MS	10.6 m	4.2 m	MS RoI	0.25, 0.5	0.25	5×10^{-9}	[22]

$$ext{MTD}: N_{ ext{bkg}}^{ ext{PU}} = \sigma_{ ext{j}} \mathcal{L}_{ ext{int}} \epsilon_{ ext{trig}}^{ ext{MTD}} \left(ar{n}_{ ext{PU}} rac{\sigma_{ ext{j}}}{\sigma_{ ext{inc}}} \epsilon_{ ext{fake}}^{ ext{j,MTD}} f_{ ext{nt}}^{ ext{j}}
ight) pprox 2 imes 10^7 0.$$

MS:
$$N_{\rm bkg}^{\rm PU} = \sigma_{\rm j} \mathcal{L}_{\rm int} \epsilon_{\rm trig}^{\rm MS} \left(\bar{n}_{\rm PU} \frac{\sigma_{\rm j}}{\sigma_{\rm inc}} \epsilon_{\rm fake}^{j,\rm MS} f_{\rm nt}^{j} \right) \approx 50$$
, (4)

- Pile-up BKG: intrinsic resolution ~190 ps
 - MTD (30ps) cut: Deltat > 1 ns
 - BKG(MTD-PU) ~ 1.3
 - MS (30ps) cut: Deltat > 0.4 ns
 - BKG(MS-PU) ~ 0.86

Time delay at MS from LHC

- The detector time resolution for MS can be downgraded to hundreds of ps
 - MS (200ps) cut: Deltat > 1ns
 - BKG(MS-PU) << 1

LLP sensitivity for resonance production

SigA: $pp \to h + j$, $h \to X + X$, $X \to SM$,

Precision Timing Enhanced Search Limit (HL-LHC)

LLP sensitivity for pair production

SigB: $pp \to \tilde{\chi}\tilde{\chi} + j$, $\tilde{\chi}_1^0 \to h + \tilde{G} \to SM + \tilde{G}$

Precision Timing Enhanced Search Limit (HL-LHC)

Comprehensive 8 TeV analysis and 13 TeV projection without timing, see Zhen Liu, B. Tweedie 1503.05923

Summary

- Timing information helps to suppress BKG
 - Generic feature (slow moving) from heavy LLP
 - Very low requirement (low pt ISR jet)
 - Allow single LLP decay search or even tracks
 - Sensitivity reach is good at large lifetime
 - O(100) ps time resolution is good enough for MS searches
- All traditional LLP search can be augmented by timing information (reoptimization)
- Precision timing is a new dimension of particle physics information available for BSM searches

Thank you!

Backup slides

Motivation for LLP search at LHC

- At d>L, LHC and far detector is comparable, but d<L, LHC is exponentially better than MATHUSLA
- LHC BKG suppression:
 - MTD: 10^{-10}, MS: 10^{-5} by timing
- Early measurement for HSCP (non-pointing photon) indicates the SM background behavior agree well with Gaussian up to 10⁻⁶ (10⁻⁴) level (experimental Monte Carlo went to 10⁻⁹), where the plot ends (data insufficient);
- More handles to suppress bkg: e.g. MET, double time delay object, displaced parameters (impact parameters)

CMS Heavy stable charged particle (HSCP) track+ToF, 1205.0272 t = L/v

CMS Heavy stable charged particle (HSCP)

Discussions

Big Signal selection enhancement Big trigger efficiency enhancement

Mapping to UV Models

Production	$\gamma\gamma(+ ext{inv.})$	$\gamma + ext{inv.}$	jj(+inv.)	jjℓ	$\ell^+\ell^-(+inv.)$	$\ell_{\alpha}^{+}\ell_{\beta\neq\alpha}^{-}(+inv.)$
DPP: sneutrino pair	†	SUSY	SUSY	SUSY	SUSY	SUSY
HP: squark pair, $\tilde{q} \rightarrow jX$	+	SUSY	SUSY	SUSY	SUSY	SUSY
or gluino pair $\tilde{g} \rightarrow jjX$						
HP: slepton pair, $\tilde{\ell} \to \ell X$	†	SUSY	SUSY	SUSY	SUSY	SUSY
or chargino pair, $\tilde{\chi} \to WX$						
HIG: $h \to XX$	Higgs, DM*	†	Higgs, DM*	RHν	Higgs, DM*	RHν*
or $\rightarrow XX + inv$.					RHν*	
HIG: $h \to X + \text{inv.}$	DM*, RHν	†	DM*	RHν	DM*	†
RES: $Z(Z') \rightarrow XX$	Z', DM*	†	Z', DM*	RHν	Z', DM*	†
or $\rightarrow XX + inv$.						
RES: $Z(Z') \rightarrow X + \text{inv.}$	DM	†	DM	RHν	DM	†
CC: $W(W') \rightarrow \ell X$	†	†	RHν*	RHν	RHν*	RHν*

Timing most significant because No tracking & No displaced vertex

- Basic Summary of our understanding:
 - For all models, timing helps (reduce bkg / allow to loosen cuts)
 - For large fraction of models, timing @ trigger level helps A-LOT by enabling LLP-targeted triggers
 - For decays to photons, timing is critical because there are no other handles (no tracking, no displaced vertices)

X represents the LLP *model definitely include missing energy;

+signature not appeared in the minimal/simplest model setup;

6th PIKIO, 10/06/2018 Jia Liu

Challenges and opportunities

- CMS MTD will be there + delay jet L1 trigger(?): require non-trivial effort to realize, e.g., low+high level with jet ROI. Once realized, could be universal boost to LLPs at the LHC! (some initial effort at LBNL LLP workshop)
 - MTD chip (4cm x 4cm), single chip trigger needs comparison to reach 30ps, track/ECAL assisted
- ATLAS MS timing layer(?) + Muon Rol trigger: timing layer no proposal yet, but is interesting to study. If not, MS RPC timing (~0.7ns) could be used, still good for heavy LLP.
- More (signal specific) additional handles: combined trigger strategy with timing as new d.o.f.
- ATLAS high granularity timing detector and LHCb Torch detector: look for forward region new physics with timing