
PyRDF
- A Python library for distributed

execution of ROOT RDataFrame
analysis

github.com/shravan97/PyRDF

Contributors

● Student
○ Shravan Murali

● Mentors
○ Enrico Guiraud
○ Enric Tejedor Saavedra
○ Diogo Castro
○ Prasanth Kothuri
○ Danilo Piparo
○ Javier Cervantes

ROOT and RDataFrame

ROOT is a modular scientific software framework. It provides all the
functionalities needed to deal with big data processing, statistical analysis,
visualisation and storage. It is written in C++ and available for use in Python as
PyROOT. [https://root.cern.ch/ for more info]

RDataFrame helps users to represent and operate on datasets easily. This is
available in PyROOT.

https://root.cern.ch/

My work in brief

A Python layer named PyRDF was implemented on top of ROOT’s RDataFrame structure. The objective of
PyRDF is to make it possible for RDataFrame analysis to run on distributed resources with no changes to its
original code

d = RDataFrame(“t”, dataset)
f = d.Define(...)
 .Define(...)
 .Filter(...)

h1 = f.Histo1D(...)
h2 = f.Histo1D(...)
h3 = f.Histo1D(...)

Local

Spark

SSHW
or

kf
lo

w
G

en
er

at
or

D
is

tr
ib

ut
or

.
.

.

CPU

CPU

CPUCPU

CPU

CPU

CPU

CPU

CPU

Features

● Select and configure the execution backend you want to use.

● Execute your analyses both locally and on Spark without changing your RDataFrame code

● Easily include C++ header files to be used from your analysis

(example for this in the next slide)

Usage

● Choosing a backend
○ You’ll just need to pass in the

backend name and
additionally the config
parameters as a dictionary

● Instantiate the RDataFrame object
○ This is just a mock of ROOT’s

RDataFrame constructors. In
fact here, you can replace C++
vectors with Python lists !

● Define your analysis code and
display
○ This is again very similar to

ROOT’s RDataFrame API Computation is triggered only after the
my_histogram.Draw() call !

Computational graph illustration

Computational graph illustration

Root Node
(rdf)

Define op
(rdf_column_1)

Filter op
(rdf_filtered_1)

Count
(rdf_count_1)

Define op
(rdf_column_2)

Histogram
(rdf_histogram_1)

Without PyRDF

● Declare a mapper function
and write all your
RDataFrame analysis there

● Declare a reducer function
● Configure your distributed

backend (say Spark)
● Write functions to call the

mapper and reducer using
your backend environment

● Display output (like draw
histograms)

https://github.com/etejedor/GSoC_2018/

(mainly for distributed backends)

https://github.com/etejedor/GSoC_2018/

With PyRDF

● Choose a distributed
backend

● Define your RDataFrame
analysis (no need of a
separate function !)

● Display your output

https://github.com/shravan97/PyRDF/blob/master/demos/RDF_demo.ipynb

(mainly for distributed backends)

https://github.com/shravan97/PyRDF/blob/master/demos/RDF_demo.ipynb

Future Improvements

● Allow the user to run a function before the
mapper

● Support more distributed backends like
Dask

● Integrate PyRDF in upstream ROOT

THANK YOU !

Quick links

http://shravanmurali.com/PyRDF/
https://github.com/shravan97/PyRDF/

http://shravanmurali.com/PyRDF/
https://github.com/shravan97/PyRDF/

