
Monitoring & Traceability of Jobs 
using ElasticSearch

for DIRACGrid project

Yash	Srivastava
Google	Summer	of	Code	participant	with	CERN-HSF
Indian	Institute	of	Information	Technology,	Sricity

Andhra	Pradesh,	India



About DIRACGrid Project

• The	DIRAC	is	an	“interware”	which	means	a	tool	for	exploiting	(distributed)	computing	and	
storage	resources.	

• The	tool	performs	a	variety	of	roles	ranging	from	the	submission	of	jobs,	the	management	of	the	
data	produced,	to	the	orchestration	of	the	distributed	resources,	while	providing	active	
monitoring	and	key	information	for	the	whole	LHCb collaboration.	

• DIRAC	is	a	generic	software,	used	and	extended	by	several	Virtual	Organizations	(VO).	
Communities	use	DIRAC	to	submit	jobs	to	hundreds	of	heterogeneous	computing	resources,	with	
several	tens	of	thousands	of	jobs	running	concurrently.	



Jobs and it’s Monitoring & Traceability

• “Job”	is	defined	as	a	computational	unit,	like	simulation	etc.	These	jobs	contain	various	
parameters	like	“long”,	“short”,	“memory	hungry”	,	“I/O	bound”,	“if	job	accessed	input	files”	,	“on	
which	host	job	ran”	etc.

• The	“Job”	unit	provides	a	lot	of	attributes	as	described	in	the	previous	point.	Important	
information	can	be	retrieved	from	these	attributes	which	can	help	assess	the	job’s	operation.

• Monitoring	of	jobs	is	essential	as	it	can	help	us	detect	dead	processes	as	well	as	helping	with	
better	resource	management.

• Traceability	of	each	of	the	submitted	jobs	is	key	when	security	checks	are	needed.



Problem

• The	problem	with	the	existing	MySQL	solution	for	the	DIRACGrid project	was	that	only	some	of	
the	records	are	stored	and	statistical	information	in	not	being	extracted	from	the	obtained	
parameters.

• This	is	due	to	usage	of	relational	database	(here	MySQL),	where	it	becomes	difficult	to	keep	and	
search	the	data	as	it	is	stored	in	key-value	pair	format.

• Along	with	the	above	problem,	the	current	code	is	only	compatible	with	Python	2	(precisely	
2.7.13)	for	its	development.	Python2	support	will	end	in	2	years	(approximately	in	2020),	and	
more	importantly	new	tools	and	features	are	only	available	within	python	3.		



Solutions Proposed

• Keeping	the	mentioned	problems	in	mind,	solutions	were	proposed	to	work	on	during	the	
summer	so	as	to	support	good	and	efficiency	data	management	as	well	as	working	towards	newer	
modules	supporting	Python	3.

• Shifting	to	a	non-relational	database	would	help	the	cause	of	making	the	queries	possible	and	
easier.	ElasticSearch,	which	is	based	on	NoSQL	(a	non-relational	DB),	a	current	state-of-the-art	
would	help	to	achieve	this.	Hence,	ElasticSearch backend	is	used	to	store	the	DIRAC’s	job	
parameters,	so	that	querying	the	data	becomes	easier.

• It	is	also	important	to	move	the	project	to	python3	or	make	it	2to3	tool	complaint:	2to3	tool	is	
used	to	facilitate	the	conversion	from	python2	to	python3.	Hence,	writing	code	in	compliance	
with	this	tool,	so	that	codes	can	be	easily	ported	to	python3	when	needed.	



Tasks Completed

• Extending	the	current	job	monitoring	system,	currently	based	upon	relational	databases,	by	using	
ElasticSearch (NoSQL	DB),	a	state-of-the-art	solution.

• Code	Submission	complaint	with	2to3	tool,	to	make	python3	porting	trouble	free.

• Unit	and	integration	tests	for	the	working	implementation.

• Documentation	for	the	working	implementation.



Add	
ElasticSearch
(ES)	backend	

for	Job	
Monitoring

Add	Job	
Attributes	to	
ElasticSearch
backend

Add	new	table	
JobsStatus to	

MySQL	
backend

Add	Clients for	
Workload	

Management	
System

Add	tests	for	
WMS	Agents

Modify	codes	
to	Python	 3

Milestones



Add ElasticSearch backend for Job Monitoring

• The	Job	Monitoring	module	in	Workload	Management	System	used	MySQL	backend	to	store	and	
access	Job	Parameters.	But	the	only	caveat	of	using	MySQL	is	that	it	is	a	relational	database	and	
also	limits	the	queries	that	can	be	processed	due	to	the	relationship	between	keys.

• Keeping	the	above	in	mind,	using	ElasticSearch (ES)	which	is	NoSQL	DB	(a	non-relational	
database)	seemed	a	good	choice	and	hence	set	up	ES	indices	and	wrote	
functions setJobParameters and	getJobParameters.

• The	functions accessed	the	indices	and	wrote	and	retreived the	values	available,	as	clear	from	
terms set	and	get.



Add Job Attributes to ElasticSearch backend

• The	Jobs	table	contains	a	set	of	values	which	are	most	commonly	accessed	by	the	queries	
processed	as	per	the	requirement.	Hence,	it	becomes	important	that	these	values	are	moved	to	
ES	backend,	as	it	would	make	query	processing	efficient	as	well	as	open	up	newer	queries	that	
can	be	performed.

• The	attributes	that	were	moved	to	ES	are: Job	Group,	Owner,	Proxy,	Submission	Time, Running	
Time.

• In	order	to	set	and	retrieve	these	attributes,	function setJobParameters is	modified	to	accept	
these	attributes	as kwargs (keyword	arguments)	and	then	set	these	values	as	and	when	specified	
by	the	user.	

• A	new	function	is	introduced	in	ElasticJobDB.pynamed getJobParametersAndAttributeswhich	
returns	both	parameters	and	attributes	mentioned	above	when	given	a	JobID.



Add new table JobsStatus to MySQL backend

• As	discussed	in	previous	slide,	not	all	the	values	linked	to	particular	JobIDare	accessed	as	often	
than	some	of	the	columns	of	the	Jobs	table.

• Hence,	separating status values	from	the	Jobs	table	is	an	efficient	way	of	accessing	these	values	
as	these	are	most	often	queried	and	would	make	the	processing	more	efficient	in	terms	of	
traversing	rows	and	columns	of	the	table	when	compared	to	much-loaded	Jobs	table.

• The	columns	of	the	new	tables	are	as	follows:	JobID (primary	key),	Status,	MinorStatus,	and	
ApplicationStatus.

• Along	with	this,	two	functions	were	written/modified	to	access	the	new	table:
1. getJobStatus (to	retrieve	values	from	the	table)
2. setJobStatus (to	set	values	in	the	table)



Add Clients for Workload Management System

• It	is	desirable	that	WMS	agents	don't	access	the	DB's	(both	ElasticSearch and	MySQL)	directly	and	
instead	access	them	via	running	service.	These	services	are	initiated	usingRPClient() and	hence	
need	to	be	initiated	and	used	to	access	or	write	to	DB's.

• But	at	the	same	time,	it	is	also	needed	that	the	modules	themselves	don't	call	these	RPCClients
and	use	the Client class	which	initiates	the	service.

• Keeping	the	above	points	in	mind,	I	added	the	following	clients	in	WMS	and	replaced	their	
RPCClient invokes	to	these	classes:

1. JobStateUpdateClient.py
2. JobManagerClient.py



Add tests for WMS Agents

• It	is	of	common	knowledge	that	with	development,	testing	becomes	an	important	part	of	the	
whole	process.	It	is	essential	as	we	keep	changing	the	codebase,	we	need	to	ensure	that	new	
changes	don't	affect	the	existing	functionality	and	doesn't	disturb	the	whole	process.

• Since	the	tests	for	WMS	agents	were	quite	limited,	I	added	the	tests	written	in	accordance	with	
'pytest'	module	for	the	following	agents:

1. JobAgent.py
2. JobCleaningAgent.py
3. PilotStatusAgent.py
4. StalledJobAgent.py



Future Work

• As	the	current	codebase	is	in	transition	from	Python2	to	Python3,	I	would	be	contributing	
towards	incorporating	code	changes	required	to	support	both	the	versions.

• Some	the	existing	and	newer	tests	don’t	have	enough	coverage	of	the	modules	available	in	the	
project.	Hence,	expanding	tests	would	be	major	contribution	ahead	checking	functionality	in	both	
the	python	versions.	


