Monitoring & Traceability of Jobs

using ElasticSearch
for DIRACGrid project

Yash Srivastava

Google Summer of Code participant with CERN-HSF
Indian Institute of Information Technology, Sricity
Andhra Pradesh, India



About DIRACGrid Project

 The DIRACis an “interware” which means a tool for exploiting (distributed) computing and
storage resources.

* The tool performs a variety of roles ranging from the submission of jobs, the management of the
data produced, to the orchestration of the distributed resources, while providing active
monitoringand key information for the whole LHCb collaboration.

* DIRAC s a generic software, used and extended by several Virtual Organizations (VO).
Communities use DIRAC to submit jobs to hundreds of heterogeneous computing resources, with
several tens of thousands of jobs runningconcurrently.



Jobs and it’s Monitoring & Traceability

* “Job” is defined as a computational unit, like simulation etc. These jobs contain various
1) L V(]

parameters like “long”, “short”, “memory hungry” , “I/O bound”, “if job accessed input files” , “on
which hostjobran” etc.

* The “Job” unit provides alot of attributes as described in the previous point. Important
informationcan be retrieved from these attributes which can help assess the job’s operation.

* Monitoringofjobsis essential asit can help us detect dead processes as well as helping with
better resource management.

* Traceability of each of the submitted jobsis key when security checks are needed.



Problem

* The problem with the existing MySQL solutionforthe DIRACGrid project was that only some of
the records are stored and statistical information in not being extracted from the obtained
parameters.

* Thisis due to usage of relational database (here MySQL), where it becomes difficult to keep and
search thedataasitis stored in key-value pair format.

* Alongwith the above problem, the current code is only compatible with Python 2 (precisely
2.7.13) for its development. Python2 support will end in 2 years (approximatelyin 2020), and
more importantly newtools and features are only available within python 3.



Solutions Proposed

* Keeping the mentioned problemsin mind, solutions were proposed to workon duringthe
summer so as to support good and efficiency data management as well as working towards newer
modules supporting Python 3.

* Shiftingto a non-relational database would help the cause of makingthe queries possible and
easier. ElasticSearch, which is based on NoSQL (a non-relational DB), a current state-of-the-art
would help to achieve this. Hence, ElasticSearch backend is used to store the DIRAC’s job
parameters, so that queryingthe data becomes easier.

* Itisalsoimportantto movethe projectto python3 or make it 2to3 tool complaint: 2to3 toolis
used to facilitate the conversionfrom python2 to python3. Hence, writing code in compliance
with thistool, so that codes can be easily ported to python3 when needed.



Tasks Completed

Extendingthe currentjob monitoringsystem, currently based upon relational databases, by using
ElasticSearch (NoSQL DB), a state-of-the-art solution.

Code Submission complaint with 2to3 tool, to make python3 portingtrouble free.

Unitand integration tests forthe working implementation.

Documentation forthe working implementation.



Milestones

Add
ElasticSearch
(ES) backend

for Job
Monitoring

Add Job
Attributes to

ElasticSearch
backend

Add new table
JobsStatus to
MySQL
backend

Add Clients for
Workload
Management
System

Add tests for

WMS Agents
Modify codes
to Python 3



Add ElasticSearch backend for Job Monitoring

* The Job Monitoringmodulein Workload Management System used MySQL backend to store and
access Job Parameters. But the only caveat of using MySQL is thatitis a relational database and
also limits the queriesthat can be processed due to the relationship between keys.

» Keeping the abovein mind, using ElasticSearch (ES) which is NoSQL DB (a non-relational
database) seemed a good choice and hence set up ES indices and wrote
functions setJobParameters and getlobParameters.

* The functionsaccessed theindices and wrote and retreived the values available, as clear from
terms setand get.



Add Job Attributes to ElasticSearch backend

 The Jobstable contains a set of values which are most commonly accessed by the queries
processed as per the requirement. Hence, it becomes important that these values are moved to

ES backend, as it would make query processing efficient as well as open up newer queries that
can be performed.

* The attributesthat were moved to ES are: Job Group, Owner, Proxy, Submission Time, Running
Time.

* In orderto set and retrieve these attributes, functionsetJobParametersis modified to accept

these attributes as kwargs (keyword arguments) and then set these values as and when specified
by the user.

 Anew functionisintroduced in ElasticlobDB.py named getJobParametersAndAttributes which
returns both parameters and attributes mentioned above when given a JobID.



Add new table JobsStatus to MySQL backend

* Asdiscussedin previousslide, not all the values linked to particularJoblD are accessed as often
than some of the columns of the Jobs table.

* Hence, separating status valuesfromtheJobstableis an efficient way of accessing these values
as these are most often queried and would make the processing more efficient in terms of
traversingrows and columns of the table when compared to much-loaded Jobs table.

* The columns of the new tables are as follows:JobID (primary key), Status, MinorStatus, and
ApplicationStatus.

* Alongwith this, two functions were written/modified to access the new table:
1. getJobStatus (to retrieve values from the table)
2. setJobStatus (tosetvaluesinthe table)



Add Clients for Workload Management System

* Itisdesirablethat WMS agents don't access the DB's (both ElasticSearch and MySQL) directlyand
instead access them via runningservice. These services are initiated using RPClient() and hence
need to be initiated and used to access or write to DB's.

* Butatthe sametime, itis alsoneededthatthe modulesthemselvesdon't call these RPCClients
and use the Client class which initiates the service.

* Keepingtheabove pointsin mind, | added the followingclientsin WMS and replaced their
RPCClientinvokes to these classes:

1. JobStateUpdateClient.py
2. JobManagerClient.py



Add tests for WMS Agents

* Itis of common knowledge that with development, testingbecomesan important part of the
whole process. It is essential as we keep changing the codebase, we need to ensure that new
changes don't affect the existing functionality and doesn't disturb the whole process.

e Since the tests for WMS agents were quite limited, | added the tests written in accordance with
'pytest' module for the following agents:

1. JobAgent.py

2. JobCleaningAgent.py
3. PilotStatusAgent.py
4. StalledJobAgent.py



Future Work

* Asthe currentcodebaseis in transition from Python2 to Python3, | would be contributing
towards incorporating code changes required to support both the versions.

* Some the existingand newer tests don’t have enough coverage of the modules availablein the

project. Hence, expandingtests would be major contribution ahead checking functionalityin both
the python versions.



