
Optimize and Integrate Standalone Tracking Library
(SixTrackLib)

Somesh Singh

Department of Computer Science and Engineering

Indian Institute of Technology Madras

September 04, 2018

Google Summer of Code 2018

Somesh Singh (IIT Madras) SixTrackLib September 04, 2018 1 / 11

Background

I SixTrackLib is a standalone particle tracking library.

I The particle accelerator is modelled as a sequence of beam elements.

I Store the properties of the beam elements sequentially to a chunk of
memory --> description of the machine is serialized.

I Tracking function : models the change in the particles’ properties due
to a beam element.

Somesh Singh (IIT Madras) SixTrackLib September 04, 2018 2 / 11

Objective

I Implement a standalone minimal parallel version of SixTrackLib1

I Study the effect of various optimization strategies on the näıve
parallel code.

I Used C and required OpenCL 1.2 for the device side code.

I Used C++ wrappers for the host side code.

1Source code on https://github.com/ssomesh/sixtracklib_gsoc18.git
Somesh Singh (IIT Madras) SixTrackLib September 04, 2018 3 / 11

https://github.com/ssomesh/sixtracklib_gsoc18.git

Pseudo code for SixTrackLib

1 for(int t = 0; t < NUM_TURNS; ++t)
2 {
3 for(int particle_index = 0;
4 particle_index < NUM_PARTICLES;
5 ++particle_index)
6 {
7 for(int beam_elem_index = 0;
8 beam_elem_index < NUM_BEAM_ELEMENTS;
9 ++beam_elem_index)

10 {
11 beam_element = beam_elements[ii];
12 be_type = get_type(beam_element);
13 switch(be_type)
14 {
15 case DRIFT: // call to ‘track_drift_particle’
16 case DRIFT_EXACT: // call to ‘track_drift_exact_particle’
17 case CAVITY: // call to ‘track_cavity_particle’
18 case ALIGN: // call to ‘track_align_particle’
19 };
20 }
21 }
22 }

Parallelization strategy: Assign one work-item to each particle
Somesh Singh (IIT Madras) SixTrackLib September 04, 2018 4 / 11

Studies carried out

Studied the performance of the parallel implementation in the following
scenarios:

1 The switch-case is inside the kernel; all tracking functions inside one
kernel.

2 The switch-case is moved out of the kernels to the host.

3 The switch-case is removed, both, from the kernels and the host.

Somesh Singh (IIT Madras) SixTrackLib September 04, 2018 5 / 11

Experimental Setup

Hardware used for benchmarking our code:

I AMD Radeon RX 560 GPU

I Nvidia GeForce GTX 1050 Ti GPU

I Nvidia GeForce GTX 1080 GPU

I Nvidia Tesla V100 GPU

I Intel Xeon CPU E5-2640 v4 (40 core)

I AMD Ryzen7 1700X (8 core) CPU

Somesh Singh (IIT Madras) SixTrackLib September 04, 2018 6 / 11

Results
Scenario 1: # particles in the range 105 – 2.5× 107

Somesh Singh (IIT Madras) SixTrackLib September 04, 2018 7 / 11

Results
Scenario 2 & Scenario 3 : # particles in the range 105 – 2.5× 107

Somesh Singh (IIT Madras) SixTrackLib September 04, 2018 8 / 11

Observations

I In scenario 2, we split the monolithic kernel in scenario 1 into multiple
kernels.

I Reduce the private memory used by each work-item and in turn
reduce the register pressure.

I Move switch-case to CPU =⇒ reduce thread divergence on the
GPU.

I When kernels are called multiple times, there is a noticeable
fluctuation in their execution times in the first few invocations, which
we term as warmup effect.

I The average execution times in scenario 2 and scenario 3 are very
similar.

Somesh Singh (IIT Madras) SixTrackLib September 04, 2018 9 / 11

Observations

I Observed slow down w.r.t scenario 1 =⇒ benefits overshadowed by
the overheads of launching the kernel and the branching on the CPU.

I Helpful when we deal with larger kernels having enough to do.

I The difference in the execution times for scenario 1 compared with
scenario2 / scenario 3 gives a rough estimate of the overheads
incurred from one case to the other.

Somesh Singh (IIT Madras) SixTrackLib September 04, 2018 10 / 11

Summary

1 Studied the effects on execution times of the parallel implementation
of SixTrackLib under different scenarios.

2 Implemented an optimization strategy of breaking a monolithic kernel
into many simpler kernels and provided a framework for applying such
optimizations.

Advantages:
I Results in better performance.
I Interoperability with codes that need to do expensive operations at

different steps.

Thank You

Somesh Singh (IIT Madras) SixTrackLib September 04, 2018 11 / 11

Summary

1 Studied the effects on execution times of the parallel implementation
of SixTrackLib under different scenarios.

2 Implemented an optimization strategy of breaking a monolithic kernel
into many simpler kernels and provided a framework for applying such
optimizations.

Advantages:
I Results in better performance.
I Interoperability with codes that need to do expensive operations at

different steps.

Thank You

Somesh Singh (IIT Madras) SixTrackLib September 04, 2018 11 / 11

