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Background

I SixTrackLib is a standalone particle tracking library.

I The particle accelerator is modelled as a sequence of beam elements.

I Store the properties of the beam elements sequentially to a chunk of
memory --> description of the machine is serialized.

I Tracking function : models the change in the particles’ properties due
to a beam element.
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Objective

I Implement a standalone minimal parallel version of SixTrackLib1

I Study the effect of various optimization strategies on the näıve
parallel code.

I Used C and required OpenCL 1.2 for the device side code.

I Used C++ wrappers for the host side code.

1Source code on https://github.com/ssomesh/sixtracklib_gsoc18.git
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Pseudo code for SixTrackLib

1 for( int t = 0; t < NUM_TURNS; ++t )
2 {
3 for( int particle_index = 0;
4 particle_index < NUM_PARTICLES;
5 ++particle_index )
6 {
7 for( int beam_elem_index = 0;
8 beam_elem_index < NUM_BEAM_ELEMENTS;
9 ++beam_elem_index )

10 {
11 beam_element = beam_elements[ii];
12 be_type = get_type( beam_element );
13 switch( be_type )
14 {
15 case DRIFT: // call to ‘track_drift_particle’
16 case DRIFT_EXACT: // call to ‘track_drift_exact_particle’
17 case CAVITY: // call to ‘track_cavity_particle’
18 case ALIGN: // call to ‘track_align_particle’
19 };
20 }
21 }
22 }

Parallelization strategy: Assign one work-item to each particle
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Studies carried out

Studied the performance of the parallel implementation in the following
scenarios:

1 The switch-case is inside the kernel; all tracking functions inside one
kernel.

2 The switch-case is moved out of the kernels to the host.

3 The switch-case is removed, both, from the kernels and the host.
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Experimental Setup

Hardware used for benchmarking our code:

I AMD Radeon RX 560 GPU

I Nvidia GeForce GTX 1050 Ti GPU

I Nvidia GeForce GTX 1080 GPU

I Nvidia Tesla V100 GPU

I Intel Xeon CPU E5-2640 v4 (40 core)

I AMD Ryzen7 1700X (8 core) CPU
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Results
Scenario 1: # particles in the range 105 – 2.5× 107
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Results
Scenario 2 & Scenario 3 : # particles in the range 105 – 2.5× 107
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Observations

I In scenario 2, we split the monolithic kernel in scenario 1 into multiple
kernels.

I Reduce the private memory used by each work-item and in turn
reduce the register pressure.

I Move switch-case to CPU =⇒ reduce thread divergence on the
GPU.

I When kernels are called multiple times, there is a noticeable
fluctuation in their execution times in the first few invocations, which
we term as warmup effect.

I The average execution times in scenario 2 and scenario 3 are very
similar.
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Observations

I Observed slow down w.r.t scenario 1 =⇒ benefits overshadowed by
the overheads of launching the kernel and the branching on the CPU.

I Helpful when we deal with larger kernels having enough to do.

I The difference in the execution times for scenario 1 compared with
scenario2 / scenario 3 gives a rough estimate of the overheads
incurred from one case to the other.
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Summary

1 Studied the effects on execution times of the parallel implementation
of SixTrackLib under different scenarios.

2 Implemented an optimization strategy of breaking a monolithic kernel
into many simpler kernels and provided a framework for applying such
optimizations.

Advantages:
I Results in better performance.
I Interoperability with codes that need to do expensive operations at

different steps.

Thank You
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