

CMS Experiment at LHC, CERN Data recorded: Sun Aug 20 13:16:45 2017 CDT Run/Event: 301472 / 634226645 Lumi section: 664

CMS Experiment at LHC, CERN Data recorded: Sun Aug 20 13:16:45 2017 CDT Run/Event: 301472 / 634226645 Lumi section: 664 Observation of Higgs boson decay to bottom quarks with CMS data

HIG-18-016 - arXiv:1808.08242, *provisionally accepted* for publication in PRL

Luca Perrozzi (ETH Zurich) on behalf of the CMS Collaboration

LPCC seminar - CERN Aug. 28st 2018

Outline

- LHC and CMS
- H→bb: motivation and challenges
- VH(bb) analysis with 2017 data
- Combination with previous results
- Prospects

The Large Hadron Collider

- After successful Run 1, LHC has produced >3 years of 13 TeV data with stunning performance
- Expected integrated luminosity >150 fb⁻¹ by the end of 2018
- DESIGN peak luminosity exceeded by a factor of 2
 - Average pileup ~38 in 2017 and 2018
- Incredible machine availability, >50% of time in stable operation

CMS Integrated Luminosity, pp

28/08/2018

The Large Hadron Collider

- After successful Run 1, LHC has produced >3 years of 13 TeV data with stunning performance
- Expected integrated luminosity >150 fb⁻¹ by the end of 2018
- DESIGN peak luminosity exceeded by a factor of 2
 - Average pileup ~38 in 2017 and 2018
- Incredible machine availability, >50% of time in stable operation

CMS Integrated Luminosity, pp

28/08/2018

Compact Muon Solenoid

 Multipurpose detector at the LHC: silicon tracking, electromagnetic & hadronic calorimeters, a 3.8 T superconducting solenoid, & muon tracking chambers

Compact Muon Solenoid

- Multipurpose detector at the LHC: silicon tracking, electromagnetic & hadronic calorimeters, a 3.8 T superconducting solenoid, & muon tracking chambers
- Pixel detector upgraded for 2017 data taking
 - Large impact on b-tagging performance (as discussed later)

FROM THE HIGGS DISCOVERY TO $H \rightarrow bb$

28/08/2018

The Higgs boson discovery

July 4th 2012

- CMS and ATLAS reported independently the first observation of the Higgs boson
 - Standard Model picture complete
- Result driven by γγ and ZZ decay modes
 - High mass resolution
 - High signal to background ratio
 - High signal trigger efficiency

ATLAS: PLB 716 (2012) 1-29 CMS: PLB 716 (2012) 30

Established Higgs properties

- Mass: $125.09 \pm 0.21\,(
 m stat.\,) \pm 0.11\,(
 m syst.\,)~
 m GeV$ atlas+CMS: prl 114 (2015) 191803
- Spin/Parity: 0⁺

ATLAS: EPJC 75 (2015) 476 CMS: PRD 92 (2015) 012004

• Width: < 1 GeV (direct)

< 0.015 GeV (indirect)

ATLAS: arXiv:1808.01191 submitted to PLB

- Observed direct coupling to:
 - Vector bosons

ATLAS: PLB 716 (2012) 1-29 CMS: PLB 716 (2012) 30

 $-\tau$ leptons

ATLAS: ATLAS-CONF-2018-021 CMS: PLB 779 (2018) 283

– top quarks

ATLAS: PLB 784 (2018) 173 CMS: PRL 120 (2018) 231801

All measurements compatible with SM predictions

28/08/2018

Why do Yukawa couplings matter? (1) A part of the Higgs sector that's unlike any other experimentally-probed interaction

DARZ

 $(-\mu^2 \phi^2 + \lambda \phi^4, HHH)$ the keystone of the Higgs mechanism and Standard Model, familiar as QFT toy model, never probed in nature

(HWW, HZZ): A gauge interaction, with scalars rather than fermions; much like what we've seen before

(Hbb, Htt, etc.): not a gauge interaction, and unlike anything we've probed before

G. Salam, LHCP '18

H→b5: motivations

- $H \rightarrow b\bar{b}$ has the largest branching fraction (58%) for m_{H} =125 GeV
- Unique final state to measure **coupling with down-type quarks**
- Drives the uncertainty of the total Higgs boson width
 - Limits the sensitivity to BSM contributions
- Not yet observed

Challenges of H→bb

• H→bb̄ compared with one of the discovery channels

٨	

- H→bb̄ search needs:
 - Highly efficient b-jets identification
 - Excellent resolution on m(bb)
 - Use of full event information to increase S/B
- Primary decay mode for searches at LEP and Tevatron
 - More difficult at LHC due to increased background (S/B ~2.5x worse than Tevatron)

First $H \rightarrow b\bar{b}$ searches started at LEP...

Physics Letters B 565 (2003) 61-75

Search for the Standard Model Higgs boson at LEP

ALEPH Collaboration¹ DELPHI Collaboration² L3 Collaboration³ OPAL Collaboration⁴

The LEP Working Group for Higgs Boson Searches⁵

PHYSICS LETTERS B

m_H > 114.4 GeV @ 95%CL

...and continued at Tevatron...

PRL 109, 071804 (2012)

PHYSICAL REVIEW LETTERS

week ending 17 AUGUST 2012

Evidence for a Particle Produced in Association with Weak Bosons and Decaying to a Bottom-Antibottom Quark Pair in Higgs Boson Searches at the Tevatron

leee

$H \rightarrow b\bar{b}$ searches continue at the LHC

Very large datasets at LHC give access to **several production modes to** search for H→bb

Gluon Fusion (87%)

Vector-Boson Fusion (7%)

ISR photon to enhance S/B

Overwhelming (**10**⁷ **larger**) background of b-quark production due to strong interactions

Very large background but a very distinctive topology

CMS: PRL 120 (2018) 071802

ATLAS: arXiv:1807.08639 submitted to PRD ATLAS: JHEP 11 (2016) 112 CMS: HIG-16-003 CMS: PRD 92 (2015) 032008

Most sensitive

Higgs-strahlung (4%)

leptons, E_T^{mis} to trigger and high p_T V suppress backgrounds

Top Fusion ttH (1%) dominant background is tt + jets

Luca Perrozzi - LPCC Seminar - Observation of Hbb with CMS

ATLAS: JHEP 05 (2016) 160 ATLAS: PRD 97, 072016 (2018) CMS: JHEP 09 (2014) 087 CMS: arXiv:1804.03682 submitted to JHEP CMS: JHEP 06 (2018) 101

VH(bb) results at LHC

VH(bb) evidence at LHC established with 2016 data by both ATLAS and CMS

- Detectors clearly demonstrated ability to deal with very high pile-up for such complex analysis
- Signal strength uncertainty ~40%

	signal strength	significance (exp)	significance (obs)
ATLAS Run 1 [1]	$0.52\substack{+0.40 \\ -0.37}$	2.6σ	1.4σ
CMS Run 1 [2]	$0.89\substack{+0.47 \\ -0.44}$	2.5σ	2.1σ
ATLAS+CMS Run 1 [3]	$0.79\substack{+0.29 \\ -0.27}$	3.7σ	2.6σ
ATLAS 2015+2016 [4]	$1.20\substack{+0.42 \\ -0.36}$	3.0σ	3.5σ
CMS 2016 [5]	$1.19\substack{+0.40 \\ -0.38}$	2.8σ	3.3σ

[1] JHEP 01 (2015) 069 [2] JHEP 08 (2016) 045

[3] JHEP 08 (2016) 045 [4] JHEP 12 (2017) 024

[4] JHEP 12 (2017) 024 [5] PLB 780 (2018) 501

Luca Perrozzi - LPCC Seminar - Observation of Hbb with CMS

S/(S+B) weighted entries

Events / 10 GeV (Weighted, backgr. sub.

200

CMS

pp \rightarrow VH, H \rightarrow bb

35.9 fb⁻¹ (13 TeV)

VH(bb) (µ=1.2)

MC uncertainty

Data

VZ(bb)

VH(bb) WITH 2017 DATA

28/08/2018

VH(bb): Analysis strategy

• Analysis strategy:

- **3 channels** with 0, 1, and 2 leptons and 2 b-tagged jets
 - To target Z(vv)H(bb), W(lv)H(bb)and Z(ll)H(bb) processes
- Signal region designed to increase S/B
 - Large boost for vector boson
 - Multivariate analysis exploiting the most discriminating variables ($m_{b\bar{b}}$, $\Delta R_{b\bar{b}}$, b-tag)
- **Control regions** to validate backgrounds and control/constrain normalizations

irreducible backgrounds

normalization from data, shapes from MC

VH(bb): Analysis strategy

• Analysis strategy:

- **3 channels** with 0, 1, and 2 leptons and 2 b-tagged jets
 - To target Z(vv)H(bb), W(lv)H(bb)and Z(ll)H(bb) processes
- Signal region designed to increase S/B
 - Large boost for vector boson
 - Multivariate analysis exploiting the most discriminating variables ($m_{b\bar{b}}$, $\Delta R_{b\bar{b}}$, b-tag)
- **Control regions** to validate backgrounds and control/constrain normalizations

irreducible backgrounds

Event Selection/Categorization

- Selections (jets, leptons, b-tagging)
 optimized separately by channel
 - 4 analysis categories:
 - 0-lepton: **p**_T(**Z**) > **170 GeV**
 - 1-lepton: p_T(W) > 150 GeV
 - 2-lepton: p_T(Z) > 150 GeV
 - 2-lepton: 50 < p_T(Z) < 150 GeV
- **Control regions** designed to map closely each signal region
 - Inverted selections to enhance purity in targeted backgrounds: tt, V+light flavor, and V+heavy flavor

Control region example

[*] Number of additional jets in the event

Fit strategy in a nutshell

Fit strategy in a nutshell

Fit strategy in a nutshell

+ control regions
obtained inverting
selections on
number of jets,
b-tagging, m(II)

VH(bb) in 2017: main features

Improved mass resolution from:

- Better b-jet identification
- New b-jet energy regression
- Kinematic fit in 2-lepton channel
- FSR jet recovery
- Use of **deep neural network** (DNN) to discriminate:
 - Signal from background, in Signal Regions
 - Background components among each other, in Control Regions
- Combined effect: O(5-10%) increase of the analysis sensitivity wrt 2016, depending on channel

b-jet identification

- Continuous effort to improve b-tagging at CMS
 - New pixel detector (4 layers)
 - DNN algorithm (DeepCSV) with additional per-track information
 - Contamination from q/g < 1% for efficiency ~70%</p>
- MC corrections derived on data with tt events
- Good agreement between data and MC verified in all analysis regions

28/08/2018

b-jet energy regression

- Regression mainly recovers missing energy in the jet due to neutrino
 - Switch from Boosted Decision Trees to DNN algorithm
- Extended set of input variables now including lepton flavor (μ /e), jet mass, fragmentation-like variable, energy fractions in ΔR rings
- Significant m(bb) resolution improvement without sculpting of the background
 - σ/peak down to 11.9% in 2017 wrt 13.2% in 2016

Kinematic fit in 2-lepton channel

- No intrinsic missing energy in the Z(II)H(bb) process
- Improve jet p_T measurement through kinematic fit procedure
 - Constrain dilepton system to Z mass
 - Balance the ll+bb+j system in the (p_x, p_y) plane
- Improvement up to 36% on m(bb) resolution

Signal vs Background discriminator

- DNN discriminator used to extract signal
 - Input variables: b-jet properties, di-jet kinematics, event topology, carefully validated through data/MC comparison
 - Trained separately in each channel
 - Performance optimization with blind analysis

Heavy Flavor control region discriminators

- Reminder: leading systematic uncertainty from normalization of V+(b)b
- 2-lepton channel control region very pure
 - Fit b-tag shape (DeepCSV) to discriminate processes
- 0- and 1-lepton channel control regions less pure
 - Fit **DNN multi-categorizer** to distinguish among background components
 - Use same input variables as Signal vs Background discriminator

Fit setup and background normalization

- Simultaneous fit of Signal and Control Regions to extract signal and background normalizations
 - Fitted variables: DNN or b-tagging shapes, or yields depending on the region
- MC shapes and normalizations floated within constraints from systematic uncertainties through nuisance parameters

Process	$Z(\nu\nu)H$	$W(\ell\nu)H$	$Z(\ell \ell)$ H low- p_{T}	$Z(\ell \ell)$ H high- p_{T}
W + udscg	1.04 ± 0.07	1.04 ± 0.07	_	_
W + b	2.09 ± 0.16	2.09 ± 0.16	_	—
$W + b\overline{b}$	1.74 ± 0.21	1.74 ± 0.21	_	_
Z + udscg	0.95 ± 0.09	_	0.89 ± 0.06	0.81 ± 0.05
Z + b	1.02 ± 0.17	—	0.94 ± 0.12	1.17 ± 0.10
$Z + b\overline{b}$	1.20 ± 0.11	_	0.81 ± 0.07	0.88 ± 0.08
tĪ	0.99 ± 0.07	0.93 ± 0.07	0.89 ± 0.07	0.91 ± 0.07

Systematic uncertainties

- Total uncertainty ~34%, statistically dominated
- Major sources of systematic uncertainties from background normalization and modeling, b-tagging, MC sample size

Uncertainty source	$\Delta \mu$		
Statistical	+0.26	-0.26	
Normalization of backgrounds	+0.12	-0.12	
Experimental	+0.16	-0.15	
b-tagging efficiency and misid	+0.09	-0.08	
V+jets modeling	+0.08	-0.07	
Jet energy scale and resolution	+0.05	-0.05	
Lepton identification	+0.02	-0.01	
Luminosity	+0.03	-0.03	
Other experimental uncertainties	+0.06	-0.05	
MC sample size	+0.12	-0.12	
Theory	+0.11	-0.09	
Background modeling	+0.08	-0.08	
Signal modeling	+0.07	-0.04	
Total	+0.35	-0.33	

Validation: VZ(bb)

- VZ analysis using Z(bb) standard candle next to H(bb) peak
- Same "technology" used for VH(bb) fit
 - Same DNN inputs (but dedicated training), same Control Regions,
 VH(bb) normalized to SM and left free to float
 - Larger m(bb) window in Signal Region to fully include Z(bb) peak

Significance 5.0σ expected **5.2σ observed** Signal strength μ = 1.05 ± 0.22

Luca Perrozzi - LPCC Seminar - Observation of Hbb with CMS

VH(bb) Results with 2017 data

- Results with 2017 data compatible with SM expectations
 - Observed significance 3.3σ , signal strength 1.08 ± 0.34
 - O(5-10%) increase in analysis sensitivity wrt 2016, depending on channel
 - Remarkable channel compatibility

Best fit u

Combining DNN distributions

- DNN distributions sorted into bins of similar S/B ratio and combined
- Excess well compatible with SM Higgs boson signal hypothesis

Visualizing the excess: m(jj) analysis

- Fit to the m(jj): lower sensitivity but direct visualization of the Higgs boson signal
- Events categorized in DNN sensitivity after removing correlations with m(jj)
- m(jj) distributions combined and weighted by S/(S + B)
- Signal strengths compatible with main analysis

COMBINATION OF VH(bb) RESULTS

28/08/2018
Combination of VH(bb) results

Significance (σ)					
Data set	Expected	Observed	Signal strength		
2017	3.1	3.3	1.08 ± 0.34		
Run 2 (2016+2017) 4.2	4.4	1.06 ± 0.26		
Run 1 + Run 2	4.9	4.8	1.01 ± 0.23		

28/08/2018

Combination of VH(bb) results

Significance (σ)					
Data set	Expected	Observed	Signal strength		
2017	3.1	3.3	1.08 ± 0.34		
Run 2 (2016+2017) 4.2	4.4	1.06 ± 0.26		
Run 1 + Run 2	4.9	4.8	1.01 ± 0.23		

NB: 5 σ observation of VH production in reach if VH($\tau\tau$) from HIG-18-007 is added.

This result is not contained in the paper as VH probes the HVV coupling, already established in Run 1

COMBINATION OF $H \rightarrow bb$ RESULTS

28/08/2018

Combination of H→bb measurements

- Combination of CMS H→bb measurements : VH, boosted ggH, VBF, ttH
- Most sources of systematic uncertainty are treated as uncorrelated
 - Theory uncertainties are correlated between all processes and data sets
- Measured signal strength is $\mu = 1.04 \pm 0.20$

Observation of the H→bb decay by the CMS Collaboration

FUTURE PROSPECTS

28/08/2018

June '18

adapted from G. Salam, LHCP '18

28/08/2018

Today

Yukawa coupling of second generation leptons and quarks challenging but already promising

adapted from G. Salam, LHCP '18

Conclusions

- CMS has reached a 5.6 σ observation of the H \rightarrow bb decay, with signal strength μ = 1.04 ± 0.20
 - Combination of several production channels, dominated by VH(bb)
 - Result contained in arXiv:1808.08242 and provisionally accepted for publication in PRL
 - Thank you to PRL and its referees for their impressive turn-around in reviewing the paper!
- Standard Model assumption on Yukawa coupling to b's confirmed within the present uncertainty
- This result is the culmination of H→bb searches that started at LEP, continued at Tevatron and at the LHC
- Achievement possible only thanks to the fantastic run of the LHC, and the CMS detector performance

- But is only a step towards the ultimate $H \rightarrow bb$ precision at LHC

BACKUP SLIDES

28/08/2018

b-tagging performance in 2016

28/08/2018

b-tagging performance in 2017

28/08/2018

b-jet energy regression

Figure 1: Dijet invariant mass distributions for simulated samples of $Z(\ell \ell)H(bb)$ events ($m_H = 125 \text{ GeV}$) without (left) and with one additional recoiling jet (right). Distributions are shown before (red) and after (blue) the energy corrections from the b-jet regression are applied, and when a kinematic fit procedure (green) is used on top of them. A Bukin function is used to fit the distribution. The fitted mean and width of the core of the distribution are displayed on the figure.

28/08/2018

b-jet energy regression

Figure 9: The two plots above show the top quark mass reconstructed in the 1-lepton t \bar{t} control region using the tagged lepton, p_T^{miss} , one of the two b-jets and the constraint of the W mass to estimate the longitudinal component of the neutrino. The reconstruction on the left uses the un-regressed b-jet energy and the right uses regressed b-jet energy.

Kinematic fit in 2-lepton channel

Figure 11: All three figures above show the ratio of the di-jet p_T to the di-lepton (V) p_T in the 2-lepton HF control region. The b-jets in the left plot come directly from CMS reconstruction with charged hadron subtraction applied. The b-jets in the center plot have been updated by the regression. The resolution is visible improved from left to center. On the right the b-jet energies are updated once again with a kinematic fit which constrains the b-jet energies using the lepton resolution. Again there is a visible improvement in b-jet resolution inferred by the narrowing balance of the di-jet plus di-lepton system.

m(bb) improvements: 2016 vs 2017

Table 1: Higgs boson invariant mass resolution before (including regression) and after the kinematic fit in bins of $p_T(V)$ and number of ISR jets. These estimates are made with Z bosons plus Higgs boson events where the Z boson decays to two charged leptons. This sample is simulated with POWHEG while showering is simulated with PYTHIA. The resolution listed in the table are the sigma in GeV of a Bukin function fit.

$p_{\mathrm{T}}(\mathrm{V})$	#ISR Jets	σ_{std}	σ_{reg}	σ_{fit}
> 150	0	17.4	14.9	9.9
> 150	1	17.9	15.4	12.4
> 150	> 1	18.9	15.9	14.4

2017

2-lepton heavy flavor control regions

Figure 6: Post-fit distributions of the two fitted bins of DeepCSV_{min} in the 2-lepton Z+HF control regions. Above are the high $p_T(V)$ categories and below are the low $p_T(V)$. The left shows the distributions for 2μ channels and on the right are the same for 2e channels.

0- and 1-lepton heavy flavor control regions

Figure 5: Post-fit distributions of the Multi-background DNN fit variable for 2017 analysis in the 1-lepton channel (top row) for muon (left) and electron (right) control regions, and for the 0-lepton channel (bottom row).

Signal and Control region definitions

Table 14: Signal region pre-selection cuts for each channel. The values listed for kinematical variables are in units of GeV.

[*] W+L.F and W+H.F taken from 1-lepton analysis

[*] W+H.F splitted in high and low mass

SF comparison: 2016 vs 2017

• Note: change in PDF, UE tune, generator versions, b-tagging algorithm, fit binning and 1-lepton pT(V) increase from 100 to 150 GeV between 2016 and 2017: no direct comparison of SF possible

Process	0-lepton	1-lepton	2-lepton low- $p_{\rm T}({\rm V})$	2-lepton high- $p_{\rm T}({\rm V})$
W0b	1.14 ± 0.07	1.14 ± 0.07	—	—
W1b	1.66 ± 0.12	1.66 ± 0.12	- 20	16 –
W2b	1.49 ± 0.12	1.49 ± 0.12	—	—
Z0b	1.03 ± 0.07		1.01 ± 0.06	1.02 ± 0.06
Z1b	1.28 ± 0.17	_	0.98 ± 0.06	1.02 ± 0.11
Z2b	1.61 ± 0.10	—	1.09 ± 0.07	1.28 ± 0.09
tī	0.78 ± 0.05	0.91 ± 0.03	1.00 ± 0.03	1.04 ± 0.05

Process	$Z(\nu\nu)H$	$W(\ell \nu)H$	$Z(\ell\ell)H \text{ low-}p_T$	$Z(\ell\ell)H$ high- p_T
W + udscg	1.04 ± 0.07	1.04 ± 0.07	-	-
W+b	2.09 ± 0.16	2.09 ± 0.16	- 20	17 –
$W + b\overline{b}$	1.74 ± 0.21	1.74 ± 0.21	_	_
Z + udscg	0.95 ± 0.09	—	0.89 ± 0.06	0.81 ± 0.05
Z + b	1.02 ± 0.17	_	0.94 ± 0.12	1.17 ± 0.10
$Z + b\overline{b}$	1.20 ± 0.11	_	0.81 ± 0.07	0.88 ± 0.08
tī	0.99 ± 0.07	0.93 ± 0.07	0.89 ± 0.07	0.91 ± 0.07

Signal vs Background discriminator

- To increase sensitivity, use DNN discriminator to extract signal
 - DNN outperforms BDT due to network depth
 - Same input variables as 2016 (b-jet properties, di-jet kinematics, event topology)
 - Validated through data/MC comparison
 - Trained separately in each channel to discriminate VH(bb) from the weighted sum of all backgrounds

Parameters optimized to maximize sensitivity

Variable	Description	0-lepton	1-lepton	2-lepton
M(jj)	dijet invariant mass	\checkmark	\checkmark	\checkmark
$p_{\rm T}(jj)$	dijet transverse momentum	\checkmark	\checkmark	\checkmark
$p_{\rm T}(j_1), p_{\rm T}(j_2)$	transverse momentum of each jet	\checkmark		\checkmark
$\Delta R(jj)$	distance in η - ϕ between jets			\checkmark
$\Delta \eta$ (jj)	difference in η between jets	\checkmark		\checkmark
$\Delta \varphi(jj)$	azimuthal angle between jets	\checkmark		
$p_{\mathrm{T}}(\mathrm{V})$	vector boson transverse momentum		\checkmark	\checkmark
$\Delta \phi(V, H)$	azimuthal angle between vector boson and dijet directions	\checkmark	\checkmark	\checkmark
$p_{\rm T}(jj)/p_{\rm T}({\rm V})$	$p_{\rm T}$ ratio between dijet and vector boson			\checkmark
M_Z	reconstructed Z boson mass			\checkmark
<i>btag</i> _{max}	value of the b-tagging discriminant (DeepCSV)	\checkmark		\checkmark
	for the jet with highest score			
btag _{min}	value of the b-tagging discriminant (DeepCSV)	\checkmark	\checkmark	\checkmark
	for the jet with second highest score			
btag _{add}	value of b-tagging discriminant for the additional jet	\checkmark		
	with highest value			
$E_{\rm T}^{\rm miss}$	missing transverse momentum	\checkmark	\checkmark	\checkmark
$\Delta \phi(E_{\rm T}^{\rm miss},j)$	azimuthal angle between $E_{\rm T}^{\rm miss}$ and closest jet with $p_{\rm T} > 30 {\rm GeV}$	\checkmark		
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},\ell)$	azimuthal angle between $E_{\rm T}^{\rm miss}$ and lepton		\checkmark	
m_{T}	mass of lepton $\vec{p}_{\rm T}$ + $E_{\rm T}^{\rm miss}$		\checkmark	
$M_{\rm t}$	reconstructed top quark mass		\checkmark	
N_{aj}	number of additional jets		\checkmark	\checkmark
$p_{\rm T}({\rm add})$	transverse momentum of leading additional jet	\checkmark		
SA5	number of soft-track jets with $p_{\rm T} > 5 {\rm GeV}$	\checkmark	\checkmark	\checkmark

28/08/2018

0- and 1-lepton signal regions' DNN

2-lepton signal regions' DNN

28/08/2018

59

Systematic uncertainties

Jet energy scale:

Split into 27 independent uncertainty sources

• Jet energy resolution:

- 10% uncertainty on regressed b-jets from dedicated study
 - Decorrelated for signal to avoid any possible constraining, covers any uncertainties from PS.
- Standard JER uncertainty for additional jets.

B-tagging:

- Split into independent uncertainty sources
- Further de-correlated based on jet pT/η, as in 2016 analysis
- Background normalizations:
 - Derived from fit to data for backgrounds with floating normalisation (V+udcsg, V+b, V+bb, tt)
 - 15% uncertainty on VV and single top cross section.
- Monte Carlo statistics
- QCD scales and PDF variations
 - Acceptance as well as overall cross section
- Lepton efficiency, pile-up re-weighting, luminosity
- Residual data/MC discrepancies
 - Δη(jj) LO to NLO re-weighting in V+jets
 - Full correction taken as uncertainty.
 - p_T(W) linear re-weighting for tt (all channels) and W+jets, single top (1-lepton channel only)
 - Statistical uncertainty band from fit to derive corrections

Uncertainty source	$\Delta \mu$	
Statistical	+0.26	-0.26
Normalization of backgrounds	+0.12	-0.12
Experimental	+0.16	-0.15
b-tagging efficiency and misid	+0.09	-0.08
V+jets modeling	+0.08	-0.07
Jet energy scale and resolution	+0.05	-0.05
Lepton identification	+0.02	-0.01
Luminosity	+0.03	-0.03
Other experimental uncertainties	+0.06	-0.05
MC sample size	+0.12	-0.12
Theory	+0.11	-0.09
Background modeling	+0.08	-0.08
Signal modeling	+0.07	-0.04
Total	+0.35	-0.33

VH(bb) DNN distributions

0-lepton

1-lepton

2-lepton

DNN distributions can also be sorted into bins of similar signal-to-background ratio, and combined

28/08/2018

Candidate event for Z(ee)H(bb)

H→bb combination: syst unc correlations

- Combination of published Run1 and Run2 CMS measurements on H→bb:
 VH, boosted ggH, VBF, ttH
- Most sources of systematic uncertainty are treated as uncorrelated
 - The dominant jet energy scale uncertainties correlated between processes at the same energy
 - Theory uncertainties are correlated between all processes and data sets

Luminosity accumulation in CMS for 2018

J. Butler - 25th Rencontres du Vietnam '18

CMS pileup profiles during Run 2

CMS Average Pileup (pp, \sqrt{s} =13 TeV)

CMS design and 2017/18 Evolution

CMS Design

- Large solenoid 6m diameter x 13 m long
 - Tracking and calorimetry fit inside
- Very strong field 3.8T
 - Excellent momentum resolution
- Chambers in the return iron track and identify muons, leading to a very compact system
- A lead tunstenate crystal calorimeter (~76K crystaks) for photon and electron reconstruction
- Hadron calorimeters for jet and missing E_T reconstruction up to $\eta^{\sim}5$
- Charged Particle Tracking with all-silicon components
 - A silicon pixel detector out to radius ~20 cm
 - A silicon microstrip detector from there out to 1.1m
- Weigh, dominated by steel, is 14'000 Tonnes

CMS is continuously upgraded to handle higher luminosity and do better physics

Evolution of Analysis Techniques

J. Butler - 25th Rencontres du Vietnam '18

- Particle Flow uses all available information to reconstruct physics objects, e.g. charged track momenta in jets
 - produces a big improvement in jet energy resolution, tau-lepton identification, and helps with high pileup
- PUPPI (PileUp Per Particle Identification) is a special tool to deal with high pileup
- Use of multivariate analysis techniques to maximize power of available statistics
- Boosted jet topologies and jet substructure analysis
- Use of Deep Neural Nets/Machine Learning

Rapid growth in 2017/18

J. Butler - 25th Rencontres du Vietnam '18

Observation of H $\rightarrow \tau^+\tau^-$ using 7, 8, and 13 (2016 only) TeV data

- Branching ratio ~ 6.3%, best channel to establish coupling of Higgs boson to fermions
- Final states: τ_hτ_h; eτ_h; μτ_h; eµ → Significance of 4.9σ observed (4.7σ expected) with13 TeV data
- Combination with 7, 8 TeV data: 5.9 σ obs. (5.9 σ exp.) and μ = 0.98 ± 0.18

the news of the past 12 months

G. Salam, LHCP '18

13

J. Butler - 25th Rencontres du Vietnam '18

ttH: 7,8, and13 TeV Combined 5.1 fb⁻¹ (7 TeV)+19.7 fb⁻¹ (8 TeV) + 35.9 fb⁻¹ (13 TeV)

Best fit value of the signal strength modifier for (upper section) the five individual decay channels considered, (middle section) the combined result for 7+8 TeV alone and for 13TeV alone, and (lower section) the overall combined result.

Test statistic vs coupling strength modifier The horizontal dashed lines indicate the *p*-values for the background-only hypothesis obtained from the asymptotic distribution of *q*,

2.5

3.5

1.5

28/08/2018

0.5

Ъ

the news of the past 12 months

This week: ATLAS >5-sigma ttH

A few weeks ago: CMS >5-sigma ttH

G. Salam, LHCP '18

Separating Measurement from Interpretation.

- Minimize theory systematics in measurements
 - Clearer and systematically improvable treatment at interpretation level

Minimize model dependence in measurements

- Decouples measurements from assumption of underlying physics model (SM, (non)linear EFT, BSM models)
- Measurements stay long-term useful
- Allows easy further (re)interpretation with different theory inputs/assumptions
 - Improved theory predictions/uncertainties
 - $\blacktriangleright \mu_i, \kappa_i$, anomalous couplings, EFT coefficients, specific BSM scenarios

< 177 ▶
STXS for VH - short intro

Stage-1 bin split mostly based on VH(bb) analysis categories / variables

- "VH" bins include leptonic VH (H undecayed)
- $qq \rightarrow V(qq)H$ as part of "VBF" bins
- gg → Z(qq)H as part of "ggF"
- Feedback on the bin split is still welcome, not set in stone!

STXS ≠ fiducial XS (and complementary) [fid/diff XS minimize theory dependence and acceptance corrections, decayed Higgs, ...]

- optimized for analysis sensitivity (e.g. in this case driven by VH(bb) categorization)
- reducing dominant theory dependence in the measurement (by moving it to the interpretation stage)
- reduced residual theory uncertainties within the measurement of each bin (if residual th. uncertainties become large in the exp. acceptance for a bin, the bin the be further split in sub-categories)

(reference from LesHouches2017)

Prospects

- Goal is decrease uncertainty as much as we can
- Currently both ATLAS and CMS have total $\delta\mu$ ~30%
 - but start to be systematic dominated!
- Projections (done in 2013) for HL-LHC

CMS Projection

$\mu_{CMS}^{run2} = 1.19^{+0.21}_{-0.20} (stat)^{+0.34}_{-0.32} (syst)$
$\mu_{ATLAS}^{run2} = 1.20^{+0.24}_{-0.23}(stat)^{+0.34}_{-0.28}(syst)$

$L (fb^{-1})$	bb
300	[11, 14]
3000	[5, 7]

Scenario 1: no change Scenario 2: Δ theory/2, rest -> 1/ \sqrt{L}

- our main systematics still partially scale with luminosity
 - statistics in CRs
 - important aspects are the modeling and MC statistics for V+jets background
- now with an analysis with SRs+CRs simultaneous fit we can revise these coupling projection in a more realistic way

Higgs at the LHC – Run1 legacy

JHEP08(2016)045

Luca Perrozzi - LPCC Seminar - Observation of Hbb with CMS

VH, Event Topology

• $H \rightarrow b\bar{b}$ at LHC is searched in events where H is produced in association with a W or Z boson with high boost (~ 100 GeV)

- events are triggered by the leptonic decay of the W/Z (e, μ , MET)
- multi-jet QCD background is highly suppressed

Standard Model Higgs Hunting: Basics

LEP+Tevatron legacy: low-mass range [114,158] GeV

The natural width is less than 100 MeV

observed peak dominated by instrumental mass resolution

Caterina Vernieri (FNAL)

C. Vernieri - SSI 2018

Standard Model Higgs Hunting: Strategy

