GPLs for Feynman integrals with unrationalizable algebraic symbol letters

Robert M. Schabinger
with Matthias Heller and Andreas von Manteuffel
Michigan State University

Outline

(1) Background

- Difficulty With Algebraic ϵ dln Differential Equations
- First Non-Trivial Example From Bhabha Scattering
- Polynomial Reduction
(2) Finding Suitable Direct Integration Variables
- Variable Changes From Polynomial Reduction
- Partial Rationalization Of The Kinematics
- Variable Change Via Parametrization By Lines
(3) Weight-Four Result For Bhabha Integral
(4) What To Look At Next

Difficulty With Algebraic ϵ dln Differential Equations

Bonciani et. al., JHEP 09 (2016) 091
For

$$
\left(w, z, m^{2}\right) \quad \text { and }
$$

have the unrationalizable symbol letter:

$$
r=\sqrt{\left(1+w^{2} z^{2}\right)(w+z)^{2}+2 w z(w-z)^{2}+4 w z^{2}\left(1+w^{2}\right)}
$$

The algebraic part of the symbol alphabet reads:

$$
\begin{aligned}
& \mathcal{L}_{A}=\{r,-(1-w)(z-w)(1-w z)+r(1+w) \\
& -(1-w)(4 w z+(w+z)(1+w z))-r(1+w) \\
& r^{2}-2 w z^{2}(1-w)^{2}+r(w+z)(1+w z) \\
& \left.r^{2}(1-z)^{2}+2 z^{2}\left(z+w^{2}\right)\left(1+w^{2} z\right)+r(1-z)(1+z)(2 w z-(w+z)(1+w z))\right\}
\end{aligned}
$$

Difficulty With Algebraic ϵ dln Differential Equations

Bonciani et. al., JHEP 09 (2016) 091
For

$$
\left(w, z, m^{2}\right) \quad \text { and }
$$

have the unrationalizable symbol letter:

$$
r=\sqrt{\left(1+w^{2} z^{2}\right)(w+z)^{2}+2 w z(w-z)^{2}+4 w z^{2}\left(1+w^{2}\right)}
$$

The algebraic part of the symbol alphabet reads:

$$
\begin{aligned}
& \mathcal{L}_{A}=\{r,-(1-w)(z-w)(1-w z)+r(1+w) \\
& -(1-w)(4 w z+(w+z)(1+w z))-r(1+w) \\
& r^{2}-2 w z^{2}(1-w)^{2}+r(w+z)(1+w z) \\
& \left.r^{2}(1-z)^{2}+2 z^{2}\left(z+w^{2}\right)\left(1+w^{2} z\right)+r(1-z)(1+z)(2 w z-(w+z)(1+w z))\right\}
\end{aligned}
$$

Construction of useful $\epsilon \mathbf{d l n}$ differential equations not straightforward!
J. M. Henn, Phys. Rev. Lett. 110 (2013) 251601

Factorization Of Algebraic Functions Is Not Canonical

$$
\begin{aligned}
& -(1-w)(z-w)(1-w z)+r(1+w)= \\
& \frac{2 w(1+z)\left(z+w^{2}\right)(2+z-w+w z(w+z)+r)}{2 w^{2}+z-w+w z(w+z)+r} \\
& -(1-w)(4 w z+(w+z)(1+w z))-r(1+w)= \\
& \frac{-8 z w^{2}(1+z)^{3}\left(1+w^{2} z\right)\left(2 w^{2}+z-w+w z(w+z)+r\right)}{(2+z-w+w z(w+z)+r)(-(w+z)(1-w z)+r)(-(z-w)(1+w z)+r)} \\
& r^{2}-2 w z^{2}(1-w)^{2}+r(w+z)(1+w z)= \\
& \frac{-z^{2}(2+z-w+w z(w+z)+r)^{2}\left(2 w^{2}+z-w+w z(w+z)+r\right)^{2}}{8(1+z)^{2}\left(1+w^{2} z\right)^{2}(-(w+z)(1-w z)+r)^{2}(-(z-w)(1+w z)+r)^{-2}} \\
& r^{2}(1-z)^{2}+2 z^{2}\left(z+w^{2}\right)\left(1+w^{2} z\right)+r(1-z)(1+z)(2 w z-(w+z)(1+w z)) \\
& =\frac{2 z^{2}\left(1+w^{2} z\right)^{2}(-(w+z)(1-w z)+r)^{2}}{(-(z-w)(1+w z)+r)^{2}}
\end{aligned}
$$

First Non-Trivial Example From Bhabha Scattering

J. M. Henn and V. A. Smirnov, JHEP 1311 (2013) 041;
J. M. Henn, Amplitudes 2017 talk; C. Duhr, Amplitudes 2018 talk

From planar, massive Bhabha electron-positron scattering:

$$
\left(s, t, m^{2}\right)=-e^{2 \gamma_{E} \epsilon} \Gamma(1+2 \epsilon)\left[\prod_{i=1}^{5} \int_{0}^{\infty} \mathrm{d} \alpha_{i}\right] \delta\left(1-\alpha_{5}\right) \mathcal{U}^{-1+3 \epsilon} \mathcal{F}^{-1-2 \epsilon}
$$

$$
\begin{aligned}
\mathcal{U} & =\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{1} \alpha_{5}+\alpha_{2} \alpha_{3}+\alpha_{2} \alpha_{4}+\alpha_{2} \alpha_{5}+\alpha_{3} \alpha_{4}+\alpha_{4} \alpha_{5} \\
\mathcal{F} & =-s \alpha_{2} \alpha_{4} \alpha_{5}-t \alpha_{1} \alpha_{2} \alpha_{3}+m^{2}\left(\alpha_{4}+\alpha_{5}\right) \mathcal{U}-m^{2}\left(\alpha_{1} \alpha_{2} \alpha_{4}+\alpha_{1} \alpha_{2} \alpha_{5}\right. \\
& \left.+\alpha_{1} \alpha_{3} \alpha_{4}+\alpha_{1} \alpha_{3} \alpha_{5}+\alpha_{1} \alpha_{4} \alpha_{5}+\alpha_{2} \alpha_{3} \alpha_{4}+\alpha_{2} \alpha_{3} \alpha_{5}+\alpha_{3} \alpha_{4} \alpha_{5}\right)
\end{aligned}
$$

First Non-Trivial Example From Bhabha Scattering

J. M. Henn and V. A. Smirnov, JHEP 1311 (2013) 041;
J. M. Henn, Amplitudes 2017 talk; C. Duhr, Amplitudes 2018 talk

From planar, massive Bhabha electron-positron scattering:

$$
\left(s, t, m^{2}\right)=-e^{2 \gamma_{E} \epsilon} \Gamma(1+2 \epsilon)\left[\prod_{i=1}^{5} \int_{0}^{\infty} \mathrm{d} \alpha_{i}\right] \delta\left(1-\alpha_{5}\right) \mathcal{U}^{-1+3 \epsilon} \mathcal{F}^{-1-2 \epsilon}
$$

$$
\begin{aligned}
\mathcal{U} & =\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{1} \alpha_{5}+\alpha_{2} \alpha_{3}+\alpha_{2} \alpha_{4}+\alpha_{2} \alpha_{5}+\alpha_{3} \alpha_{4}+\alpha_{4} \alpha_{5} \\
\mathcal{F} & =-s \alpha_{2} \alpha_{4} \alpha_{5}-t \alpha_{1} \alpha_{2} \alpha_{3}+m^{2}\left(\alpha_{4}+\alpha_{5}\right) \mathcal{U}-m^{2}\left(\alpha_{1} \alpha_{2} \alpha_{4}+\alpha_{1} \alpha_{2} \alpha_{5}\right. \\
& \left.+\alpha_{1} \alpha_{3} \alpha_{4}+\alpha_{1} \alpha_{3} \alpha_{5}+\alpha_{1} \alpha_{4} \alpha_{5}+\alpha_{2} \alpha_{3} \alpha_{4}+\alpha_{2} \alpha_{3} \alpha_{5}+\alpha_{3} \alpha_{4} \alpha_{5}\right)
\end{aligned}
$$

No evaluation in terms of standard multiple polylogarithms known!

What Polynomial Reduction Has To Offer

F. Brown, Commun. Math. Phys. 287 (2009) 925; arXiv:0910.0114; E. Panzer, arXiv:1506.07243 implemented in HyperInt, E. Panzer, Comput. Phys. Commun. 188 (2015) 148

- For Feynman parameter integrals, can conceptualize polynomial reduction as an efficient "simulation" of each direct integration step (in terms of GPLs) of each possible integration order.

What Polynomial Reduction Has To Offer

F. Brown, Commun. Math. Phys. 287 (2009) 925; arXiv:0910.0114; E. Panzer, arXiv:1506.07243 implemented in HyperInt, e. Panzer, Comput. Phys. Commun. 188 (2015) 148

- For Feynman parameter integrals, can conceptualize polynomial reduction as an efficient "simulation" of each direct integration step (in terms of GPLs) of each possible integration order.
- For each integration order, the algorithm tries to generate sets of irreducible polynomials containing the sets of irreducible polynomials which appear in the integrand after each integration step. "Upper bound" on the symbol alphabet at each step.

What Polynomial Reduction Has To Offer

F. Brown, Commun. Math. Phys. 287 (2009) 925; arXiv:0910.0114; E. Panzer, arXiv:1506.07243 implemented in HyperInt, E. Panzer, Comput. Phys. Commun. 188 (2015) 148

- For Feynman parameter integrals, can conceptualize polynomial reduction as an efficient "simulation" of each direct integration step (in terms of GPLs) of each possible integration order.
- For each integration order, the algorithm tries to generate sets of irreducible polynomials containing the sets of irreducible polynomials which appear in the integrand after each integration step. "Upper bound" on the symbol alphabet at each step.
- For particular integration orders, the algorithm can short-circuit and signal that a particular integration order would generate functions at intermediate stages which go beyond GPLs.

What Polynomial Reduction Has To Offer

F. Brown, Commun. Math. Phys. 287 (2009) 925; arXiv:0910.0114; E. Panzer, arXiv:1506.07243 implemented in HyperInt, e. Panzer, Comput. Phys. Commun. 188 (2015) 148

- For Feynman parameter integrals, can conceptualize polynomial reduction as an efficient "simulation" of each direct integration step (in terms of GPLs) of each possible integration order.
- For each integration order, the algorithm tries to generate sets of irreducible polynomials containing the sets of irreducible polynomials which appear in the integrand after each integration step. "Upper bound" on the symbol alphabet at each step.
- For particular integration orders, the algorithm can short-circuit and signal that a particular integration order would generate functions at intermediate stages which go beyond GPLs.

not linearly reducible, can integrate out α_{1} or α_{3} only

Polynomial Reduction Is Still Useful In The Absence Of Linear Reducibility

Can easily find a good variable change by studying the irreducible polynomials which could appear after integrating out α_{1} :

$$
\begin{aligned}
& \mathrm{L}_{\alpha_{1}}=\left\{1+\alpha_{2}+\alpha_{3}, m^{2}-t \alpha_{2} \alpha_{3}, \alpha_{2}\left(1+\alpha_{3}\right)+\left(1+\alpha_{2}+\alpha_{3}\right) \alpha_{4}\right. \\
& m^{2} \alpha_{2}+\left(m^{2}+\left(2 m^{2}-s\right) \alpha_{2}\right) \alpha_{4}+m^{2}\left(1+\alpha_{2}+\alpha_{3}\right) \alpha_{4}^{2} \\
& \alpha_{2}^{2}\left(m^{2}+t \alpha_{3}\left(1+\alpha_{3}\right)\right)+\left(2 m^{2}-s+t \alpha_{3}\right)\left(1+\alpha_{2}+\alpha_{3}\right) \alpha_{2} \alpha_{4} \\
& \left.+m^{2}\left(1+\alpha_{2}+\alpha_{3}\right)^{2} \alpha_{4}^{2}\right\}
\end{aligned}
$$

Polynomial Reduction Is Still Useful In The Absence Of Linear Reducibility

Can easily find a good variable change by studying the irreducible polynomials which could appear after integrating out α_{1} :

$$
\begin{aligned}
& \mathrm{L}_{\alpha_{1}}=\left\{1+\alpha_{2}+\alpha_{3}, m^{2}-t \alpha_{2} \alpha_{3}, \alpha_{2}\left(1+\alpha_{3}\right)+\left(1+\alpha_{2}+\alpha_{3}\right) \alpha_{4},\right. \\
& m^{2} \alpha_{2}+\left(m^{2}+\left(2 m^{2}-s\right) \alpha_{2}\right) \alpha_{4}+m^{2}\left(1+\alpha_{2}+\alpha_{3}\right) \alpha_{4}^{2}, \\
& \alpha_{2}^{2}\left(m^{2}+t \alpha_{3}\left(1+\alpha_{3}\right)\right)+\left(2 m^{2}-s+t \alpha_{3}\right)\left(1+\alpha_{2}+\alpha_{3}\right) \alpha_{2} \alpha_{4} \\
& \left.+m^{2}\left(1+\alpha_{2}+\alpha_{3}\right)^{2} \alpha_{4}^{2}\right\}
\end{aligned}
$$

\Longrightarrow the first variable change for $P_{7,11}, \alpha_{4}=\frac{x_{4} \alpha_{2}}{1+\alpha_{2}+\alpha_{3}}$, looks promising
E. Panzer, arXiv:1506.07243

Polynomial Reduction Is Still Useful In The Absence Of Linear Reducibility

In contrast to the $P_{7,11}$ analysis, all other polynomials are still fine:

$$
\begin{aligned}
& \mathrm{L}_{\alpha_{1}}=\left\{1+\alpha_{2}+\alpha_{3}, m^{2}-t \alpha_{2} \alpha_{3}, \alpha_{2}\left(1+\alpha_{3}+x_{4}\right)\right. \\
& \frac{\alpha_{2}}{1+\alpha_{2}+\alpha_{3}}\left(m^{2}\left(1+\alpha_{2}+\alpha_{3}\right)+\left(m^{2}+\left(2 m^{2}-s\right) \alpha_{2}\right) x_{4}+m^{2} \alpha_{2} x_{4}^{2}\right) \\
& \left.\alpha_{2}^{2}\left(m^{2}+t \alpha_{3}\left(1+\alpha_{3}\right)+\left(2 m^{2}-s+t \alpha_{3}\right) x_{4}+m^{2} x_{4}^{2}\right)\right\}
\end{aligned}
$$

Polynomial Reduction Is Still Useful In The Absence Of Linear Reducibility

In contrast to the $P_{7,11}$ analysis, all other polynomials are still fine:

$$
\begin{aligned}
& \mathrm{L}_{\alpha_{1}}=\left\{1+\alpha_{2}+\alpha_{3}, m^{2}-t \alpha_{2} \alpha_{3}, \alpha_{2}\left(1+\alpha_{3}+x_{4}\right)\right. \\
& \frac{\alpha_{2}}{1+\alpha_{2}+\alpha_{3}}\left(m^{2}\left(1+\alpha_{2}+\alpha_{3}\right)+\left(m^{2}+\left(2 m^{2}-s\right) \alpha_{2}\right) x_{4}+m^{2} \alpha_{2} x_{4}^{2}\right) \\
& \left.\alpha_{2}^{2}\left(m^{2}+t \alpha_{3}\left(1+\alpha_{3}\right)+\left(2 m^{2}-s+t \alpha_{3}\right) x_{4}+m^{2} x_{4}^{2}\right)\right\}
\end{aligned}
$$

\Longrightarrow GPLs with rational weights and arguments after α_{2} integration

How To Proceed For The Final Two Integrations?

Rerunning the polynomial reduction in HyperInt, we get stuck again:

$$
\begin{aligned}
& \mathrm{L}_{\alpha_{1} \alpha_{2}}=\left\{1+\alpha_{3}, 1+\alpha_{3}+x_{4}, m^{2}+t \alpha_{3}+t \alpha_{3}^{2}, m^{2}+\left(2 m^{2}-s\right) x_{4}+m^{2} x_{4}^{2},\right. \\
& m^{2}\left(1+x_{4}\right)-s+\left(m^{2}\left(2+x_{4}\right)-s\right) \alpha_{3}, m^{2}+\left(2 m^{2}-s\right) x_{4}+m^{2} x_{4}^{2} \\
& \left.+t\left(1+x_{4}\right) \alpha_{3}+t \alpha_{3}^{2}\right\}
\end{aligned}
$$

How To Proceed For The Final Two Integrations?

Rerunning the polynomial reduction in HyperInt, we get stuck again:

$$
\begin{aligned}
& \mathrm{L}_{\alpha_{1} \alpha_{2}}=\left\{1+\alpha_{3}, 1+\alpha_{3}+x_{4}, m^{2}+t \alpha_{3}+t \alpha_{3}^{2}, m^{2}+\left(2 m^{2}-s\right) x_{4}+m^{2} x_{4}^{2},\right. \\
& m^{2}\left(1+x_{4}\right)-s+\left(m^{2}\left(2+x_{4}\right)-s\right) \alpha_{3}, m^{2}+\left(2 m^{2}-s\right) x_{4}+m^{2} x_{4}^{2} \\
& \left.+t\left(1+x_{4}\right) \alpha_{3}+t \alpha_{3}^{2}\right\}
\end{aligned}
$$

How To Proceed For The Final Two Integrations?

Rerunning the polynomial reduction in HyperInt, we get stuck again:

$$
\begin{aligned}
& \mathrm{L}_{\alpha_{1} \alpha_{2}}=\left\{1+\alpha_{3}, 1+\alpha_{3}+x_{4}, m^{2}+t \alpha_{3}+t \alpha_{3}^{2}, m^{2}+\left(2 m^{2}-s\right) x_{4}+m^{2} x_{4}^{2},\right. \\
& m^{2}\left(1+x_{4}\right)-s+\left(m^{2}\left(2+x_{4}\right)-s\right) \alpha_{3}, m^{2}+\left(2 m^{2}-s\right) x_{4}+m^{2} x_{4}^{2} \\
& \left.+t\left(1+x_{4}\right) \alpha_{3}+t \alpha_{3}^{2}\right\}
\end{aligned}
$$

How to proceed without leaving the space of GPLs?

How To Proceed For The Final Two Integrations?

Rerunning the polynomial reduction in HyperInt, we get stuck again:

$$
\begin{aligned}
& \mathrm{L}_{\alpha_{1} \alpha_{2}}=\left\{1+\alpha_{3}, 1+\alpha_{3}+x_{4}, m^{2}+t \alpha_{3}+t \alpha_{3}^{2}, m^{2}+\left(2 m^{2}-s\right) x_{4}+m^{2} x_{4}^{2},\right. \\
& m^{2}\left(1+x_{4}\right)-s+\left(m^{2}\left(2+x_{4}\right)-s\right) \alpha_{3}, m^{2}+\left(2 m^{2}-s\right) x_{4}+m^{2} x_{4}^{2} \\
& \left.+t\left(1+x_{4}\right) \alpha_{3}+t \alpha_{3}^{2}\right\}
\end{aligned}
$$

How to proceed without leaving the space of GPLs?

- $m^{2}+t \alpha_{3}+t \alpha_{3}^{2}$ and $m^{2}+\left(2 m^{2}-s\right) x_{4}+m^{2} x_{4}^{2}$ no issue, dealt with via kinematic variable changes.
- $m^{2}+\left(2 m^{2}-s\right) x_{4}+m^{2} x_{4}^{2}+t\left(1+x_{4}\right) \alpha_{3}+t \alpha_{3}^{2}$ requires a non-trivial change of variables which maps the domain of the final integration parameter onto $[0,1]$.

Kinematic Variable Changes Eliminate Some Roots

S. Caron-Huot and J. M. Henn, JHEP 1406 (2014) 114

$$
s=-\frac{4 m^{2}\left(v_{2}-v_{1}\right)^{2}}{\left(1-v_{1}\right)\left(1+v_{1}\right)\left(1-v_{2}\right)\left(1+v_{2}\right)} \quad \text { and } \quad t=-\frac{m^{2}\left(v_{2}-v_{1}\right)^{2}}{v_{1} v_{2}}
$$

get rid of two square roots which would otherwise arise:

$$
m^{2}+t \alpha_{3}+t \alpha_{3}^{2}=\frac{m^{2}\left(v_{1}-\left(v_{2}-v_{1}\right) \alpha_{3}\right)\left(v_{2}+\left(v_{2}-v_{1}\right) \alpha_{3}\right)}{v_{1} v_{2}}
$$

and

$$
\begin{aligned}
& m^{2}+\left(2 m^{2}-s\right) x_{4}+m^{2} x_{4}^{2}= \\
& \frac{m^{2}\left(\left(1+v_{1}\right)\left(1-v_{2}\right)+\left(1-v_{1}\right)\left(1+v_{2}\right) x_{4}\right)\left(\left(1-v_{1}\right)\left(1+v_{2}\right)+\left(1+v_{1}\right)\left(1-v_{2}\right) x_{4}\right)}{\left(1-v_{1}\right)\left(1+v_{1}\right)\left(1-v_{2}\right)\left(1+v_{2}\right)}
\end{aligned}
$$

Variable Change Via Parametrization By Lines

E. Panzer, JHEP 1403 (2014) 071; M. Besier et. al., Commun. Num. Theor. Phys. 13 (2019) 253

For technical reasons, set $\alpha_{3}=\frac{x_{3}}{1-x_{3}}$. The x_{3} integration leads to

$$
\sqrt{1+\frac{2\left(4 m^{2}-2 s-t\right)}{4 m^{2}-t} x_{4}+x_{4}^{2}}
$$

This obstruction is removed by finding a rational parametrization of:

$$
1+\frac{2\left(4 m^{2}-2 s-t\right)}{4 m^{2}-t} x_{4}+x_{4}^{2}=\rho^{2} .
$$

Parametrizing the algebraic variety by lines, $\rho=y_{4}\left(x_{4}-x_{4}^{(0)}\right)+\rho^{(0)}$, through the rational point $\left(x_{4}^{(0)}, \rho^{(0)}\right)=\left(-\frac{2\left(4 m^{2}-2 s-t\right)}{4 m^{2}-t}, 1\right)$ leads to:

$$
x_{4}=\frac{2 y_{4}\left(1+\frac{4 m^{2}-2 s-t}{4 m^{2}-t} y_{4}\right)}{\left(1-y_{4}\right)\left(1+y_{4}\right)}
$$

Weight-Four Result For Bhabha Integral

From these considerations, I was able to directly evaluate at $\mathcal{O}\left(\epsilon^{0}\right)$ in terms of GPLs with the root $\sqrt{p_{1}\left(v_{1}, v_{2}\right) p_{2}\left(v_{1}, v_{2}\right) p_{3}\left(v_{1}, v_{2}\right) p_{4}\left(v_{1}, v_{2}\right)}$

$$
\begin{aligned}
& p_{1}\left(v_{1}, v_{2}\right)=1+v_{1}-v_{2}\left(1-v_{1}\right) \\
& p_{2}\left(v_{1}, v_{2}\right)=1+v_{2}-v_{1}\left(1-v_{2}\right) \\
& p_{3}\left(v_{1}, v_{2}\right)=v_{1}\left(1-v_{1}\right)+v_{2}\left(1-v_{2}\right)+v_{1} v_{2}\left(2-v_{1}-v_{2}\right) \\
& p_{4}\left(v_{1}, v_{2}\right)=v_{1}\left(1+v_{1}\right)+v_{2}\left(1+v_{2}\right)-v_{1} v_{2}\left(2+v_{1}+v_{2}\right)
\end{aligned}
$$

in the weights of the most complicated GPLs. From GiNaC:
C. Bauer et. al., J. Symb. Comput. 33 (2002) 1;
J. Vollinga and S. Weinzierl, Comput. Phys. Commun. 167 (2005) 177

$(-1 / 36,-8 / 35,2) \approx-6.317550089475753330169497 \ldots+\mathcal{O}(\epsilon)$
confirmed with FIESTA 4, A. Smirnov, Comput. Phys. Commun. 204 (2016) 189

What To Look At Next

Direct integration methods are very powerful!

What To Look At Next

Direct integration methods are very powerful!

- Finally, evaluate the master integrals for the virtual part of the $\mathcal{O}\left(\alpha \alpha_{s}\right)$ mixed EW-QCD corrections to the Drell-Yan process.

What To Look At Next

Direct integration methods are very powerful!

- Finally, evaluate the master integrals for the virtual part of the $\mathcal{O}\left(\alpha \alpha_{s}\right)$ mixed EW-QCD corrections to the Drell-Yan process.
- Revisit Bhabha scattering in the differential equations approach.

What To Look At Next

Direct integration methods are very powerful!

- Finally, evaluate the master integrals for the virtual part of the $\mathcal{O}\left(\alpha \alpha_{s}\right)$ mixed EW-QCD corrections to the Drell-Yan process.
- Revisit Bhabha scattering in the differential equations approach.
- Look at the polylogarithmic families of integrals from Higgs plus jet production @ LHC to see if we can cope in the presence of (presumably) multiple unrationalizable square roots.

What To Look At Next

Direct integration methods are very powerful!

- Finally, evaluate the master integrals for the virtual part of the $\mathcal{O}\left(\alpha \alpha_{s}\right)$ mixed EW-QCD corrections to the Drell-Yan process.
- Revisit Bhabha scattering in the differential equations approach.
- Look at the polylogarithmic families of integrals from Higgs plus jet production @ LHC to see if we can cope in the presence of (presumably) multiple unrationalizable square roots.
- Learn about elliptic multiple polylogarithm reduction identities by comparing the solution for the Bhabha integral of this talk with the solution given last year in terms of eMPLs.

