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The analytic evaluation of the contribution with the colour
factor (d2b<?)? which for a SU(N,) group is given by
(dgb«)> NI —6NZ+18
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The cusp and collinear anomalous dimensions 7,5, and 4 are
extracted from the pole part of log(F,) after renormalization
of as The corresponding n-loop coefficients are defined by

(Y

with x = cusp or x = gq.
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Two-loop corrections were evaluated in the end of eighties.

Three-loop results

Analytic results for the three missing coefficients

Analytic results for the three-loop master integrals up to
weight 8

motivated by a future four-loop calculation.
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The photon-quark form factor in the large-N, limit.

Fermionic corrections with three closed quark loops, i.e. n?
The n? contributions to fermionic form factors

The n? and ng,ns contributions to the quark and gluon QCD
form factors
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Our calculation:

m Generation of diagrams. Tensor reduction. Expressing all
the Feynman integrals as integrals of several families.

m IBP reduction to master integrals using FIRE combined
with LiteRed.

m Evaluation of the master integrals with differential
equations using a canonical basis.
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We introduce a second mass scale g5 = xg° in order to use the
powerful method of differential equations.

non-planar | # 1-scale | # 2-scale | number of | size of tables
family Mls Mls integrals | (MB) (1-scale)
df2-2 71 337 14156 98
df2-3 45 244 15278 50
df2-5 41 92 11620 23
df2-6 35 78 11531 18




Four-loop quark form factor with quartic fundamental colour factor

We need an IBP reduction of input 1-scale integrals appearing
in the calculation and an IBP reduction of 2-scale integrals
needed to derive differential equations.



Four-loop quark form factor with quartic fundamental colour factor

We need an IBP reduction of input 1-scale integrals appearing
in the calculation and an IBP reduction of 2-scale integrals
needed to derive differential equations.

The IBP reduction of both 2-scale and 1-scale integrals is
complicated.



Four-loop quark form factor with quartic fundamental colour factor

We need an IBP reduction of input 1-scale integrals appearing
in the calculation and an IBP reduction of 2-scale integrals
needed to derive differential equations.

The IBP reduction of both 2-scale and 1-scale integrals is
complicated.

Complexity can be defined as the deviation of a given integral
Gay,20.....25 CONsidered as a function of 18 integer indices a;

from the corner point of the corresponding sector, i.e. with
indices 1 and 0.



Four-loop quark form factor with quartic fundamental colour factor

We need an IBP reduction of input 1-scale integrals appearing
in the calculation and an IBP reduction of 2-scale integrals
needed to derive differential equations.

The IBP reduction of both 2-scale and 1-scale integrals is
complicated.

Complexity can be defined as the deviation of a given integral
Gay,20.....25 CONsidered as a function of 18 integer indices a;
from the corner point of the corresponding sector, i.e. with
indices 1 and 0.

In our calculation, we had in the top sector complexity up to 5
for 1-scale integrals and complexity up to 3 for 2-scale
integrals.
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The standard version of FIRE provided an IBP reduction of all
the 1-scale input integrals and almost all the 2-scale integrals.

It failed for 2-scale integrals needed to derive DE in the top
sector of family df2-2.

Then modular arithmetic was introduced into FIRE using ideas
on which Finred is based.

Then the missing reduction became feasible ;)
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Some practical recipes

m Get rid of spurious denominators using a transition to a
better basis of master integrals.

m Choose numerators as propagators, i.e. as squares of
some momenta.

m Choose loop momenta in such a way that the total
‘length’ of the propagators and numerators will be
minimal.



Differential equations as a method to evaluate Feynman
integrals [A.\V. Kotikov'91]
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Differential equations as a method to evaluate Feynman
integrals

Evaluating master integrals by differential equations

Canonical bases
f'(e,x) = e A(x) f(x,€)

where ¢ = (4 — d)/2 and f is a vector of master integrals.
In our case, x = g3/q* and

ak
Alx) = Z —

k=0,1

with x(© =0, x(\) = 1.
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To turn to canonical bases we use a private implementation of
the algorithm of Lee

Canonical differential equations are solved order by order in ¢
and results are expressed in terms of harmonic polylogarithms
(HPL) by E. Remiddi and J. Vermaseren.

We choose the point x = 1 in order to fix the boundary
conditions, where our integrals are expressed in terms of 28
master propagator integrals

The differential equations are then used to transport the
information to the point x = 0.
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We solve our differential equations asymptotically near the
point x = 0, where terms with x % k =0,1,...,8 are
present, and fix these solutions by matching them to our
solution at general x using HPL

The asymptotic solutions are linear combinations of powers
x—ke with k =0,1,...,8. We pick up asymptotic terms with
k = 0 and obtain the so-called naive values of the canonical
master integrals at x = 0.

From the analytic results for the naive part we obtain
analytical results for the required one-scale master integrals
after changing back to the primary basis.
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In this calculation, we proceeded by constructing an associator
which is a matrix that transforms the vector composed of
terms of asymptotic expansion near x = 1 into the vector
composed of terms of asymptotic expansion near x = 0.

This approach is more algorithmic and can be applied to more
complicated non-planar diagrams.

We had to expand the associator up to €® (weight 9) for df2-2
and df2-3 since the property of uniform weight is destroyed
when mapping the two-scale master integrals to one-scale
master integrals in the limit x — 0. In the final result for the
form factor all weight-nine constants drop out.

Checks: by FIESTA and by comparison with some
partial numerical results
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Our results:
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where Ng = N, = 3.
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The cusp and collinear anomalous dimensions
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The results for 72 and the finite part of the form factor are
new.
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Agreement with known four-loop partial results

for the quark and gluon splitting functions which provided
numerical results for cusp anomalous dimensions.

Agreement of analytic ns term of the light-like QCD cusp
anomalous dimension

with our results.
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m Essential improvements of the methods of evaluating
Feynman integrals were crucial in our project:
improvements of IBP reductions, constructing a technique
to build up associators.

m For the first time, master integrals with twelve
propagators corresponding to non-planar graphs were
analytically evaluated.

m The non-planar graphs involved in the calculation are of
genus 1. For graphs of genus 2 and 3, the situation is
more complicated.

to be continued



