Four-loop quark form factor with quartic fundamental colour factor

Four-loop quark form factor with quartic fundamental colour factor

Vladimir A. Smirnov

Skobeltsyn Institute of Nuclear Physics of Moscow State University

Amplitudes 2019, Dublin, July 1

in collaboration with Roman Lee, Alexander Smirnov and Matthias Steinhauser [R.N. Lee, A. Smirnov, V.S. & M. Steinhauser'19]

in collaboration with Roman Lee, Alexander Smirnov and Matthias Steinhauser [R.N. Lee, A. Smirnov, V.S. & M. Steinhauser'19]

The quark-anti-quark-photon form factor with massless quarks which is obtained from the corresponding vertex function Γ^{μ}_{q} via

$$F_q(q^2) = -rac{1}{4(1-\epsilon)q^2} \operatorname{Tr} \left(\phi_2 \, \Gamma^\mu_q \, \phi_1 \, \gamma_\mu
ight) \, ,$$

(日) (同) (三) (三) (三) (○) (○)

where $q = q_1 + q_2$, and $q_1 (q_2)$ is the incoming quark (anti-quark) momentum.

in collaboration with Roman Lee, Alexander Smirnov and Matthias Steinhauser [R.N. Lee, A. Smirnov, V.S. & M. Steinhauser'19]

The quark-anti-quark-photon form factor with massless quarks which is obtained from the corresponding vertex function Γ^{μ}_q via

$$F_q(q^2) = -rac{1}{4(1-\epsilon)q^2} \operatorname{Tr} \left(\phi_2 \, \Gamma^\mu_q \, \phi_1 \, \gamma_\mu
ight) \, ,$$

where $q = q_1 + q_2$, and $q_1 (q_2)$ is the incoming quark (anti-quark) momentum.

The analytic evaluation of the contribution with the colour factor $(d_F^{abcd})^2$ which for a SU(N_c) group is given by

$$\frac{(d_F^{abcd})^2}{N_A} = \frac{N_c^4 - 6N_c^2 + 18}{96N_c^2}$$

Four-loop quark form factor with quartic fundamental colour factor

$$F_q = 1 + \sum_{n \ge 1} \left(\frac{\alpha_s^0}{4\pi}\right)^n \left(\frac{\mu^2}{-q^2 - i0}\right)^{n\epsilon} F_q^{(n)},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Four-loop quark form factor with quartic fundamental colour factor

$$F_q = 1 + \sum_{n\geq 1} \left(\frac{\alpha_s^0}{4\pi}\right)^n \left(\frac{\mu^2}{-q^2 - i0}\right)^{n\epsilon} F_q^{(n)},$$

The cusp and collinear anomalous dimensions γ_{cusp} and γ_q are extracted from the pole part of $\log(F_q)$ after renormalization of α_s The corresponding *n*-loop coefficients are defined by

$$\gamma_x = \sum_{n\geq 0} \left(\frac{\alpha_s(\mu^2)}{4\pi}\right)^n \gamma_x^n,$$

うして ふゆう ふほう ふほう ふしつ

with $x = \operatorname{cusp}$ or x = q.

Three-loop results [P. A. Baikov, K. G. Chetyrkin, A.V. Smirnov, V.S. & M. Steinhauser'09, T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli & C. Studerus'10]

ション ふゆ マ キャット マックタイ

Three-loop results [P. A. Baikov, K. G. Chetyrkin, A.V. Smirnov, V.S. & M. Steinhauser'09, T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli &

C. Studerus'10]

Analytic results for the three missing coefficients [R. N. Lee, A. Smirnov & V.S.'10]

Three-loop results

- [P. A. Baikov, K. G. Chetyrkin, A.V. Smirnov, V.S. &
- M. Steinhauser'09,
- T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli &
- C. Studerus'10]

Analytic results for the three missing coefficients [R. N. Lee, A. Smirnov & V.S.'10]

Analytic results for the three-loop master integrals up to weight 8

うして ふゆう ふほう ふほう ふしつ

[R. N. Lee, A. Smirnov & V.S.'10]

motivated by a future four-loop calculation.

The photon-quark form factor in the large- N_c limit. [J. Henn, A. Smirnov, V.S. & M. Steinhauser'16; J. Henn, R. Lee, A. Smirnov, V.S. & M. Steinhauser'16]

The photon-quark form factor in the large- N_c limit. [J. Henn, A. Smirnov, V.S. & M. Steinhauser'16; J. Henn, R. Lee, A. Smirnov, V.S. & M. Steinhauser'16] Fermionic corrections with three closed quark loops, i.e. n_f^3 [A. von Manteuffel & R. Schabinger'16]

うして ふゆう ふほう ふほう ふしつ

The photon-quark form factor in the large- N_c limit. [J. Henn, A. Smirnov, V.S. & M. Steinhauser'16; J. Henn, R. Lee, A. Smirnov, V.S. & M. Steinhauser'16] Fermionic corrections with three closed quark loops, i.e. n_f^3 [A. von Manteuffel & R. Schabinger'16] The n_f^2 contributions to fermionic form factors [R.N. Lee, A. Smirnov, V.S. & M. Steinhauser'17] The photon-quark form factor in the large- N_c limit. [J. Henn, A. Smirnov, V.S. & M. Steinhauser'16; J. Henn, R. Lee, A. Smirnov, V.S. & M. Steinhauser'16]

Fermionic corrections with three closed quark loops, i.e. n_f^3 [A. von Manteuffel & R. Schabinger'16]

The n_f^2 contributions to fermionic form factors [R.N. Lee, A. Smirnov, V.S. & M. Steinhauser'17]

The n_f^2 and $n_{q\gamma}n_f$ contributions to the quark and gluon QCD form factors

うして ふぼう ふほう ふほう うんの

[A. von Manteuffel & R. Schabinger'19]

Four-loop quark form factor with quartic fundamental colour factor

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Our calculation:

Our calculation:

 Generation of diagrams. Tensor reduction. Expressing all the Feynman integrals as integrals of several families.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Our calculation:

- Generation of diagrams. Tensor reduction. Expressing all the Feynman integrals as integrals of several families.
- IBP reduction to master integrals using FIRE combined with LiteRed.

Our calculation:

- Generation of diagrams. Tensor reduction. Expressing all the Feynman integrals as integrals of several families.
- IBP reduction to master integrals using FIRE combined with LiteRed.

うして ふゆう ふほう ふほう ふしつ

Evaluation of the master integrals with differential equations using a canonical basis.

Four-loop quark form factor with quartic fundamental colour factor

We introduce a second mass scale $q_2^2 = xq^2$ in order to use the powerful method of differential equations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

We introduce a second mass scale $q_2^2 = xq^2$ in order to use the powerful method of differential equations.

non-planar	# 1-scale	# 2-scale	number of	size of tables
family	MIs	MIs	integrals	(MB) (1-scale)
df2-2	71	337	14156	98
df2-3	45	244	15278	50
df2-5	41	92	11620	23
df2-6	35	78	11531	18

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

The IBP reduction of both 2-scale and 1-scale integrals is complicated.

The IBP reduction of both 2-scale and 1-scale integrals is complicated.

Complexity can be defined as the deviation of a given integral $G_{a_1,a_2,...,a_{18}}$ considered as a function of 18 integer indices a_i from the corner point of the corresponding sector, i.e. with indices 1 and 0.

The IBP reduction of both 2-scale and 1-scale integrals is complicated.

Complexity can be defined as the deviation of a given integral $G_{a_1,a_2,...,a_{18}}$ considered as a function of 18 integer indices a_i from the corner point of the corresponding sector, i.e. with indices 1 and 0.

In our calculation, we had in the top sector complexity up to 5 for 1-scale integrals and complexity up to 3 for 2-scale integrals.

The standard version of FIRE provided an IBP reduction of all the 1-scale input integrals and almost all the 2-scale integrals.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The standard version of FIRE provided an IBP reduction of all the 1-scale input integrals and almost all the 2-scale integrals. It failed for 2-scale integrals needed to derive DE in the top sector of family df2-2.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

The standard version of FIRE provided an IBP reduction of all the 1-scale input integrals and almost all the 2-scale integrals.

It failed for 2-scale integrals needed to derive DE in the top sector of family df2-2.

Then modular arithmetic was introduced into FIRE using ideas on which Finred [A. von Manteuffel'16] is based.

うして ふゆう ふほう ふほう ふしつ

The standard version of FIRE provided an IBP reduction of all the 1-scale input integrals and almost all the 2-scale integrals.

It failed for 2-scale integrals needed to derive DE in the top sector of family df2-2.

Then modular arithmetic was introduced into FIRE using ideas on which Finred [A. von Manteuffel'16] is based.

うして ふゆう ふほう ふほう ふしつ

Then the missing reduction became feasible ;)

 Get rid of spurious denominators using a transition to a better basis of master integrals.

▲□▶ ▲□▶ ▲□▶ ★□▶ □ ○ ○ ○ ○

- Get rid of spurious denominators using a transition to a better basis of master integrals.
- Choose numerators as propagators, i.e. as squares of some momenta.

- Get rid of spurious denominators using a transition to a better basis of master integrals.
- Choose numerators as propagators, i.e. as squares of some momenta.
- Choose loop momenta in such a way that the total 'length' of the propagators and numerators will be minimal.

ション ふゆ マ キャット マックタイ

Evaluating master integrals by differential equations [E. Remiddi'97, T. Gehrmann & E. Remiddi'00]

Evaluating master integrals by differential equations [E. Remiddi'97, T. Gehrmann & E. Remiddi'00]

Canonical bases [J. Henn'13]

$$f'(\epsilon, x) = \epsilon A(x) f(x, \epsilon)$$

where $\varepsilon = (4 - d)/2$ and f is a vector of master integrals.

Evaluating master integrals by differential equations [E. Remiddi'97, T. Gehrmann & E. Remiddi'00]

Canonical bases [J. Henn'13]

$$f'(\epsilon, x) = \epsilon A(x) f(x, \epsilon)$$

where $\varepsilon = (4 - d)/2$ and f is a vector of master integrals. In our case, $x = q_2^2/q^2$ and

$$A(x) = \sum_{k=0,1} \frac{a_k}{x - x^{(k)}}$$

(日) (同) (三) (三) (三) (○) (○)

with $x^{(0)} = 0, x^{(1)} = 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Canonical differential equations are solved order by order in ϵ and results are expressed in terms of harmonic polylogarithms (HPL) by E. Remiddi and J. Vermaseren.

Canonical differential equations are solved order by order in ϵ and results are expressed in terms of harmonic polylogarithms (HPL) by E. Remiddi and J. Vermaseren.

We choose the point x = 1 in order to fix the boundary conditions, where our integrals are expressed in terms of 28 master propagator integrals [P.A. Baikov & K.G. Chetyrkin'10; R.N. Lee, A. Smirnov &

V.S.'11]

Canonical differential equations are solved order by order in ϵ and results are expressed in terms of harmonic polylogarithms (HPL) by E. Remiddi and J. Vermaseren.

We choose the point x = 1 in order to fix the boundary conditions, where our integrals are expressed in terms of 28 master propagator integrals [P.A. Baikov & K.G. Chetyrkin'10; R.N. Lee, A. Smirnov & V.S.'11]

The differential equations are then used to transport the information to the point x = 0.

We solve our differential equations asymptotically near the point x = 0, where terms with $x^{-k\epsilon}$, k = 0, 1, ..., 8 are present, and fix these solutions by matching them to our solution at general x using HPL [D. Maitre'05].

We solve our differential equations asymptotically near the point x = 0, where terms with $x^{-k\epsilon}$, k = 0, 1, ..., 8 are present, and fix these solutions by matching them to our solution at general x using HPL [D. Maitre'05].

The asymptotic solutions are linear combinations of powers $x^{-k\epsilon}$ with k = 0, 1, ..., 8. We pick up asymptotic terms with k = 0 and obtain the so-called naive values of the canonical master integrals at x = 0.

うして ふゆう ふほう ふほう ふしつ

We solve our differential equations asymptotically near the point x = 0, where terms with $x^{-k\epsilon}$, k = 0, 1, ..., 8 are present, and fix these solutions by matching them to our solution at general x using HPL [D. Maitre'05].

The asymptotic solutions are linear combinations of powers $x^{-k\epsilon}$ with k = 0, 1, ..., 8. We pick up asymptotic terms with k = 0 and obtain the so-called naive values of the canonical master integrals at x = 0.

From the analytic results for the naive part we obtain analytical results for the required one-scale master integrals after changing back to the primary basis.

This approach is more algorithmic and can be applied to more complicated non-planar diagrams.

This approach is more algorithmic and can be applied to more complicated non-planar diagrams.

We had to expand the associator up to ϵ^9 (weight 9) for df2-2 and df2-3 since the property of uniform weight is destroyed when mapping the two-scale master integrals to one-scale master integrals in the limit $x \rightarrow 0$. In the final result for the form factor all weight-nine constants drop out.

This approach is more algorithmic and can be applied to more complicated non-planar diagrams.

We had to expand the associator up to e^9 (weight 9) for df2-2 and df2-3 since the property of uniform weight is destroyed when mapping the two-scale master integrals to one-scale master integrals in the limit $x \rightarrow 0$. In the final result for the form factor all weight-nine constants drop out.

Checks: by FIESTA [A. Smirnov] and by comparison with some partial numerical results [R.H. Boels, T. Huber & G. Yang'11].

$G_{111111111111111}^{(df2-2)} =$
1 1 1 73 1 331 $7\pi^2$ 1 $311\zeta_3$ $245\pi^2$ 1765
$+\frac{\epsilon^{2}}{\epsilon^{2}}\left\lfloor\frac{144}{144}\right\rfloor+\frac{\epsilon^{7}}{\epsilon^{7}}\left\lfloor\frac{576}{576}\right\rfloor+\frac{\epsilon^{6}}{\epsilon^{6}}\left\lfloor\frac{1152}{1152}-\frac{216}{216}\right\rfloor+\frac{\epsilon^{5}}{\epsilon^{5}}\left\lfloor-\frac{126}{216}-\frac{576}{576}-\frac{1152}{1152}\right\rfloor$
$+\frac{1}{2}\left[-\frac{1103\zeta_3}{2}-\frac{37\pi^4}{2}-\frac{917\pi^2}{2}+\frac{2297}{2}\right]+\frac{1}{2}\left[\frac{4021\pi^2\zeta_3}{2}-\frac{42053\zeta_3}{2}-\frac{22667\zeta_5}{2}\right]$
$+ \frac{\epsilon^4}{\epsilon^4} \begin{bmatrix} - \frac{54}{54} & \frac{1440}{1440} & \frac{1728}{1728} & \frac{576}{576} \end{bmatrix} + \frac{\epsilon^3}{\epsilon^3} \begin{bmatrix} -648 & -\frac{1728}{1728} & -\frac{360}{360} \end{bmatrix}$
$31327\pi^4$ $2615\pi^2$ 59 1 $10784\zeta_3^2$ $13595\pi^2\zeta_3$ $293837\zeta_3$ $268139\zeta_5$
$= \frac{1}{51840} + \frac{1}{864} = \frac{1}{36} + \frac{1}{\epsilon^2} = \frac{1}{81} + \frac{1}{216} + \frac{1}{1728} = \frac{1}{360}$
$=\frac{4901\pi^{6}}{40973\pi^{4}}=\frac{40973\pi^{4}}{347\pi^{2}}=\frac{21161}{21161}+\frac{1}{2}\left[\frac{1960259\zeta_{3}^{2}}{1037\pi^{4}}\zeta_{3}+\frac{117521\pi^{2}\zeta_{3}}{117521\pi^{2}}\zeta_{3}+\frac{117521\pi^{2}\zeta_{3}}{117521\pi^{2}}\zeta_{3}+\frac{117521\pi^{2}\zeta_{3}}{117521\pi^{2}}\zeta_{3}+\frac{117521\pi^{2}\zeta_{3}}{117521\pi^{2}}\zeta_{3}+\frac{117521\pi^{2}\zeta_{3}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{117521\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{11752\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752\pi^{2}}}\zeta_{3}+\frac{1175\pi^{2}}{11752$
$-\frac{1}{38880} - \frac{1}{103680} - \frac{96}{96} - \frac{288}{288} + \frac{1}{6} - \frac{1296}{1296} + \frac{1}{160} + \frac{1296}{1296}$
$490831\zeta_{3} = 508661\pi^{2}\zeta_{5} = 2028557\zeta_{5} = 10749139\zeta_{7} = 3561371\pi^{6} = 110171\pi^{4}$
$= \frac{1}{864} + \frac{1}{2160} = \frac{1}{2880} - \frac{1}{4032} = \frac{1}{2177280} + \frac{1}{34560}$
$20797\pi^2 222407 4937s_{8a} 582209\pi^2\zeta_3^2 8605981\zeta_3^2 2064401\zeta_5\zeta_3$
$-\frac{1}{432} + \frac{1}{288} - \frac{1}{6} - \frac{1944}{1944} + \frac{1}{5184} + \frac{1}{270}$
$+\frac{3543269\pi^{4}\zeta_{3}}{876841\pi^{2}\zeta_{3}}+\frac{325039\zeta_{3}}{325039\zeta_{3}}+\frac{87229\pi^{2}\zeta_{5}}{87229\pi^{2}\zeta_{5}}+\frac{2528065\zeta_{5}}{8894555\zeta_{7}}$
$+ \frac{1}{77760} - \frac{1}{1296} + \frac{1}{216} + \frac{1}{48} + \frac{1}{576} - \frac{1}{504}$
$17509\pi^{8}$ 579329 π^{6} 547763 π^{4} 126427 π^{2} 1754951
$-\frac{1088640}{1088640} + \frac{1}{2177280} - \frac{1}{51840} + \frac{1}{216} - \frac{1}{288} + O(\epsilon)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Our results:

$$\begin{split} F_{q}^{(n)}\Big|_{(d_{p}^{abcd})^{2}} &= n_{f} \frac{(d_{p}^{abcd})^{2}}{N_{F}} \left\{ \frac{1}{\epsilon^{2}} \left[\frac{40\zeta_{5}}{3} + \frac{8\zeta_{3}}{3} - \frac{4\pi^{2}}{3} \right] + \frac{1}{\epsilon} \left[-\frac{148\pi^{6}}{8505} - \frac{152\zeta_{3}^{2}}{3} - \frac{8\pi^{2}\zeta_{3}}{3} \right] \\ &+ \frac{2720\zeta_{5}}{9} + \frac{10\pi^{4}}{27} + \frac{664\zeta_{3}}{9} - \frac{284\pi^{2}}{9} + 48 \right] - 1240\zeta_{7} - \frac{988\pi^{4}\zeta_{3}}{135} \\ &+ \frac{496\pi^{2}\zeta_{5}}{9} + \frac{10405\pi^{6}}{10206} + \frac{680\zeta_{3}^{2}}{9} + \frac{95098\zeta_{5}}{27} + \frac{46\pi^{2}\zeta_{3}}{9} + \frac{1888\pi^{4}}{405} \\ &- \frac{13414\zeta_{3}}{27} - \frac{10783\pi^{2}}{27} + \frac{3190}{3} \right\}, \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

where $N_F = N_c = 3$.

The cusp and collinear anomalous dimensions

$$\begin{split} C_F \gamma^3_{\text{cusp}} \Big|_{(d_F^{abcd})^2} &= n_f \left(\frac{(d_F^{abcd})^2}{N_F} \left(-\frac{1280}{3} \zeta_5 - \frac{256}{3} \zeta_3 + \frac{128}{3} \pi^2 \right) \right) \\ &\approx n_f \left(\frac{(d_F^{abcd})^2}{N_F} \left(-123.894910 \dots \right) \right) \\ \gamma^3_q \Big|_{(d_F^{abcd})^2} &= n_f \left(\frac{(d_F^{abcd})^2}{N_F} \left(-\frac{592\pi^6}{8505} - \frac{608\zeta_3^2}{3} + \frac{10880\zeta_5}{9} - \frac{32\pi^2\zeta_3}{3} \right) \\ &+ \frac{40\pi^4}{27} + \frac{2656\zeta_3}{9} - \frac{1136\pi^2}{9} + 192 \right) . \end{split}$$

The results for γ_q^3 and the finite part of the form factor are new.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Agreement with known four-loop partial results [S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren & A. Vogt'17,18] for the quark and gluon splitting functions which provided numerical results for cusp anomalous dimensions.

Agreement with known four-loop partial results [S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren & A. Vogt'17,18] for the quark and gluon splitting functions which provided numerical results for cusp anomalous dimensions. Agreement of analytic n_f term of the light-like QCD cusp anomalous dimension [J.M. Henn, T. Peraro, M. Stahlhofen & P. Wasser,19]

with our results.

うして ふゆう ふほう ふほう ふしつ

 Essential improvements of the methods of evaluating Feynman integrals were crucial in our project: improvements of IBP reductions, constructing a technique to build up associators.

▲□▶ ▲□▶ ▲□▶ ★□▶ □ ○ ○ ○ ○

 Essential improvements of the methods of evaluating Feynman integrals were crucial in our project: improvements of IBP reductions, constructing a technique to build up associators.

ション ふゆ マ キャット マックタイ

 For the first time, master integrals with twelve propagators corresponding to non-planar graphs were analytically evaluated.

- Essential improvements of the methods of evaluating Feynman integrals were crucial in our project: improvements of IBP reductions, constructing a technique to build up associators.
- For the first time, master integrals with twelve propagators corresponding to non-planar graphs were analytically evaluated.
- The non-planar graphs involved in the calculation are of genus 1. For graphs of genus 2 and 3, the situation is more complicated.

- Essential improvements of the methods of evaluating Feynman integrals were crucial in our project: improvements of IBP reductions, constructing a technique to build up associators.
- For the first time, master integrals with twelve propagators corresponding to non-planar graphs were analytically evaluated.
- The non-planar graphs involved in the calculation are of genus 1. For graphs of genus 2 and 3, the situation is more complicated.

to be continued

うして ふゆう ふほう ふほう ふしつ