Four-loop quark form factor with quartic fundamental colour factor

Vladimir A. Smirnov

Skobeltsyn Institute of Nuclear Physics of Moscow State University
Amplitudes 2019, Dublin, July 1
in collaboration with Roman Lee, Alexander Smirnov and Matthias Steinhauser
[R.N. Lee, A. Smirnov, V.S. \& M. Steinhauser'19]
in collaboration with Roman Lee, Alexander Smirnov and Matthias Steinhauser

[R.N. Lee, A. Smirnov, V.S. \& M. Steinhauser'19]

The quark-anti-quark-photon form factor with massless quarks which is obtained from the corresponding vertex function Γ_{q}^{μ} via

$$
F_{q}\left(q^{2}\right)=-\frac{1}{4(1-\epsilon) q^{2}} \operatorname{Tr}\left(q_{2} \Gamma_{q}^{\mu} \phi_{1} \gamma_{\mu}\right)
$$

where $q=q_{1}+q_{2}$, and $q_{1}\left(q_{2}\right)$ is the incoming quark (anti-quark) momentum.
in collaboration with Roman Lee, Alexander Smirnov and Matthias Steinhauser

[R.N. Lee, A. Smirnov, V.S. \& M. Steinhauser'19]

The quark-anti-quark-photon form factor with massless quarks which is obtained from the corresponding vertex function Γ_{q}^{μ} via

$$
F_{q}\left(q^{2}\right)=-\frac{1}{4(1-\epsilon) q^{2}} \operatorname{Tr}\left(\phi_{2} \Gamma_{q}^{\mu} \not \phi_{1} \gamma_{\mu}\right)
$$

where $q=q_{1}+q_{2}$, and $q_{1}\left(q_{2}\right)$ is the incoming quark (anti-quark) momentum.

The analytic evaluation of the contribution with the colour factor $\left(d_{F}^{a b c d}\right)^{2}$ which for a $\operatorname{SU}\left(N_{c}\right)$ group is given by

$$
\frac{\left(d_{F}^{a b c d}\right)^{2}}{N_{A}}=\frac{N_{c}^{4}-6 N_{c}^{2}+18}{96 N_{c}^{2}}
$$

$$
F_{q}=1+\sum_{n \geq 1}\left(\frac{\alpha_{s}^{0}}{4 \pi}\right)^{n}\left(\frac{\mu^{2}}{-q^{2}-i 0}\right)^{n \epsilon} F_{q}^{(n)},
$$

$$
F_{q}=1+\sum_{n \geq 1}\left(\frac{\alpha_{s}^{0}}{4 \pi}\right)^{n}\left(\frac{\mu^{2}}{-q^{2}-i 0}\right)^{n \epsilon} F_{q}^{(n)},
$$

The cusp and collinear anomalous dimensions $\gamma_{\text {cusp }}$ and γ_{q} are extracted from the pole part of $\log \left(F_{q}\right)$ after renormalization of α_{s} The corresponding n-loop coefficients are defined by

$$
\gamma_{x}=\sum_{n \geq 0}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{4 \pi}\right)^{n} \gamma_{x}^{n},
$$

with $x=$ cusp or $x=q$.

Two-loop corrections were evaluated in the end of eighties.

Two-loop corrections were evaluated in the end of eighties.
Three-loop results
[P. A. Baikov, K. G. Chetyrkin, A. V. Smirnov, V.S. \&
M. Steinhauser'09,
T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli \& C. Studerus'10]

Two-loop corrections were evaluated in the end of eighties.
Three-loop results
[P. A. Baikov, K. G. Chetyrkin, A. V. Smirnov, V.S. \&
M. Steinhauser'09,
T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli \&
C. Studerus'10]

Analytic results for the three missing coefficients [R. N. Lee, A. Smirnov \& V.S.'10]

Two-loop corrections were evaluated in the end of eighties.
Three-loop results
[P. A. Baikov, K. G. Chetyrkin, A. V. Smirnov, V.S. \&
M. Steinhauser'09,
T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli \&
C. Studerus'10]

Analytic results for the three missing coefficients
[R. N. Lee, A. Smirnov \& V.S.'10]
Analytic results for the three-loop master integrals up to weight 8
[R. N. Lee, A. Smirnov \& V.S.'10]
motivated by a future four-loop calculation.

The photon-quark form factor in the large- N_{c} limit. [J. Henn, A. Smirnov, V.S. \& M. Steinhauser'16; J. Henn, R. Lee, A. Smirnov, V.S. \& M. Steinhauser'16]

The photon-quark form factor in the large- N_{c} limit. [J. Henn, A. Smirnov, V.S. \& M. Steinhauser'16; J. Henn, R. Lee, A. Smirnov, V.S. \& M. Steinhauser'16]

Fermionic corrections with three closed quark loops, i.e. n_{f}^{3} [A. von Manteuffel \& R. Schabinger'16]

The photon-quark form factor in the large- N_{c} limit. [J. Henn, A. Smirnov, V.S. \& M. Steinhauser'16; J. Henn, R. Lee, A. Smirnov, V.S. \& M. Steinhauser'16]

Fermionic corrections with three closed quark loops, i.e. n_{f}^{3} [A. von Manteuffel \& R. Schabinger'16]
The n_{f}^{2} contributions to fermionic form factors
[R.N. Lee, A. Smirnov, V.S. \& M. Steinhauser'17]

The photon-quark form factor in the large- N_{c} limit. [J. Henn, A. Smirnov, V.S. \& M. Steinhauser'16; J. Henn, R. Lee, A. Smirnov, V.S. \& M. Steinhauser'16]

Fermionic corrections with three closed quark loops, i.e. n_{f}^{3} [A. von Manteuffel \& R. Schabinger'16]
The n_{f}^{2} contributions to fermionic form factors [R.N. Lee, A. Smirnov, V.S. \& M. Steinhauser'17]
The n_{f}^{2} and $n_{q \gamma} n_{f}$ contributions to the quark and gluon QCD form factors
[A. von Manteuffel \& R. Schabinger'19]

Our calculation:

Our calculation:
■ Generation of diagrams. Tensor reduction. Expressing all the Feynman integrals as integrals of several families.

Our calculation:

- Generation of diagrams. Tensor reduction. Expressing all the Feynman integrals as integrals of several families.
- IBP reduction to master integrals using FIRE combined with LiteRed.

Our calculation:

- Generation of diagrams. Tensor reduction. Expressing all the Feynman integrals as integrals of several families.
- IBP reduction to master integrals using FIRE combined with LiteRed.
- Evaluation of the master integrals with differential equations using a canonical basis.

We introduce a second mass scale $q_{2}^{2}=x q^{2}$ in order to use the powerful method of differential equations.

We introduce a second mass scale $q_{2}^{2}=x q^{2}$ in order to use the powerful method of differential equations.

non-planar family	\# 1-scale Mls	\# 2-scale Mls	number of integrals	size of tables (MB) (1-scale)
df2-2	71	337	14156	98
df2-3	45	244	15278	50
df2-5	41	92	11620	23
df2-6	35	78	11531	18

We need an IBP reduction of input 1-scale integrals appearing in the calculation and an IBP reduction of 2-scale integrals needed to derive differential equations.

We need an IBP reduction of input 1-scale integrals appearing in the calculation and an IBP reduction of 2-scale integrals needed to derive differential equations.
The IBP reduction of both 2-scale and 1-scale integrals is complicated.

We need an IBP reduction of input 1-scale integrals appearing in the calculation and an IBP reduction of 2-scale integrals needed to derive differential equations.
The IBP reduction of both 2-scale and 1-scale integrals is complicated.
Complexity can be defined as the deviation of a given integral $G_{a_{1}, a_{2}, \ldots, a_{18}}$ considered as a function of 18 integer indices a_{i} from the corner point of the corresponding sector, i.e. with indices 1 and 0 .

We need an IBP reduction of input 1-scale integrals appearing in the calculation and an IBP reduction of 2-scale integrals needed to derive differential equations.
The IBP reduction of both 2-scale and 1-scale integrals is complicated.
Complexity can be defined as the deviation of a given integral $G_{a_{1}, a_{2}, \ldots, a_{18}}$ considered as a function of 18 integer indices a_{i} from the corner point of the corresponding sector, i.e. with indices 1 and 0 .
In our calculation, we had in the top sector complexity up to 5 for 1 -scale integrals and complexity up to 3 for 2 -scale integrals.

The standard version of FIRE provided an IBP reduction of all the 1 -scale input integrals and almost all the 2 -scale integrals.

The standard version of FIRE provided an IBP reduction of all the 1 -scale input integrals and almost all the 2 -scale integrals.
It failed for 2-scale integrals needed to derive DE in the top sector of family df2-2.

The standard version of FIRE provided an IBP reduction of all the 1 -scale input integrals and almost all the 2 -scale integrals.
It failed for 2-scale integrals needed to derive DE in the top sector of family df2-2.
Then modular arithmetic was introduced into FIRE using ideas on which Finred [A. von Manteuffel'16] is based.

The standard version of FIRE provided an IBP reduction of all the 1 -scale input integrals and almost all the 2 -scale integrals.
It failed for 2-scale integrals needed to derive DE in the top sector of family df2-2.
Then modular arithmetic was introduced into FIRE using ideas on which Finred [A. von Manteuffel'16] is based.
Then the missing reduction became feasible ;)

Some practical recipes

Some practical recipes

- Get rid of spurious denominators using a transition to a better basis of master integrals.

Some practical recipes

- Get rid of spurious denominators using a transition to a better basis of master integrals.

■ Choose numerators as propagators, i.e. as squares of some momenta.

Some practical recipes

- Get rid of spurious denominators using a transition to a better basis of master integrals.
- Choose numerators as propagators, i.e. as squares of some momenta.
- Choose loop momenta in such a way that the total 'length' of the propagators and numerators will be minimal.

Differential equations as a method to evaluate Feynman integrals [A.V. Kotikov'91]

Differential equations as a method to evaluate Feynman integrals [A.V. Kotikov'91]
Evaluating master integrals by differential equations [E. Remiddi'97, T. Gehrmann \& E. Remiddi'00]

Differential equations as a method to evaluate Feynman integrals [A.V. Kotikov'91]
Evaluating master integrals by differential equations [E. Remiddi'97, T. Gehrmann \& E. Remiddi' 00]
Canonical bases [J. Henn'13]

$$
f^{\prime}(\epsilon, x)=\epsilon A(x) f(x, \epsilon)
$$

where $\varepsilon=(4-d) / 2$ and f is a vector of master integrals.

Differential equations as a method to evaluate Feynman integrals [A.V. Kotikov'91]
Evaluating master integrals by differential equations [E. Remiddi'97, T. Gehrmann \& E. Remiddi' 00]
Canonical bases [J. Henn'13]

$$
f^{\prime}(\epsilon, x)=\epsilon A(x) f(x, \epsilon)
$$

where $\varepsilon=(4-d) / 2$ and f is a vector of master integrals. In our case, $x=q_{2}^{2} / q^{2}$ and

$$
A(x)=\sum_{k=0,1} \frac{a_{k}}{x-x^{(k)}}
$$

with $x^{(0)}=0, x^{(1)}=1$.

To turn to canonical bases we use a private implementation of the algorithm of Lee [R.N. Lee'14].

To turn to canonical bases we use a private implementation of the algorithm of Lee [R.N. Lee'14].
Canonical differential equations are solved order by order in ϵ and results are expressed in terms of harmonic polylogarithms (HPL) by E. Remiddi and J. Vermaseren.

To turn to canonical bases we use a private implementation of the algorithm of Lee [R.N. Lee'14].
Canonical differential equations are solved order by order in ϵ and results are expressed in terms of harmonic polylogarithms (HPL) by E. Remiddi and J. Vermaseren.
We choose the point $x=1$ in order to fix the boundary conditions, where our integrals are expressed in terms of 28 master propagator integrals
[P.A. Baikov \& K. G. Chetyrkin'10; R.N. Lee, A. Smirnov \&
V.S.'11]

To turn to canonical bases we use a private implementation of the algorithm of Lee [R.N. Lee'14].
Canonical differential equations are solved order by order in ϵ and results are expressed in terms of harmonic polylogarithms (HPL) by E. Remiddi and J. Vermaseren.
We choose the point $x=1$ in order to fix the boundary conditions, where our integrals are expressed in terms of 28 master propagator integrals
[P.A. Baikov \& K. G. Chetyrkin'10; R. N. Lee, A. Smirnov \&
V.S.'11]

The differential equations are then used to transport the information to the point $x=0$.

We solve our differential equations asymptotically near the point $x=0$, where terms with $x^{-k \epsilon}, k=0,1, \ldots, 8$ are present, and fix these solutions by matching them to our solution at general x using HPL [D. Maitre'05].

We solve our differential equations asymptotically near the point $x=0$, where terms with $x^{-k \epsilon}, k=0,1, \ldots, 8$ are present, and fix these solutions by matching them to our solution at general x using HPL [D. Maitre'05].
The asymptotic solutions are linear combinations of powers $x^{-k \epsilon}$ with $k=0,1, \ldots, 8$. We pick up asymptotic terms with $k=0$ and obtain the so-called naive values of the canonical master integrals at $x=0$.

We solve our differential equations asymptotically near the point $x=0$, where terms with $x^{-k \epsilon}, k=0,1, \ldots, 8$ are present, and fix these solutions by matching them to our solution at general x using HPL [D. Maitre'05].
The asymptotic solutions are linear combinations of powers $x^{-k \epsilon}$ with $k=0,1, \ldots, 8$. We pick up asymptotic terms with $k=0$ and obtain the so-called naive values of the canonical master integrals at $x=0$.

From the analytic results for the naive part we obtain analytical results for the required one-scale master integrals after changing back to the primary basis.

In this calculation, we proceeded by constructing an associator which is a matrix that transforms the vector composed of terms of asymptotic expansion near $x=1$ into the vector composed of terms of asymptotic expansion near $x=0$.

In this calculation, we proceeded by constructing an associator which is a matrix that transforms the vector composed of terms of asymptotic expansion near $x=1$ into the vector composed of terms of asymptotic expansion near $x=0$.
This approach is more algorithmic and can be applied to more complicated non-planar diagrams.

In this calculation, we proceeded by constructing an associator which is a matrix that transforms the vector composed of terms of asymptotic expansion near $x=1$ into the vector composed of terms of asymptotic expansion near $x=0$.

This approach is more algorithmic and can be applied to more complicated non-planar diagrams.
We had to expand the associator up to ϵ^{9} (weight 9) for df2-2 and df2-3 since the property of uniform weight is destroyed when mapping the two-scale master integrals to one-scale master integrals in the limit $x \rightarrow 0$. In the final result for the form factor all weight-nine constants drop out.

In this calculation, we proceeded by constructing an associator which is a matrix that transforms the vector composed of terms of asymptotic expansion near $x=1$ into the vector composed of terms of asymptotic expansion near $x=0$.
This approach is more algorithmic and can be applied to more complicated non-planar diagrams.
We had to expand the associator up to ϵ^{9} (weight 9) for df2-2 and df2-3 since the property of uniform weight is destroyed when mapping the two-scale master integrals to one-scale master integrals in the limit $x \rightarrow 0$. In the final result for the form factor all weight-nine constants drop out.

Checks: by FIESTA [A. Smirnov] and by comparison with some partial numerical results [R.H. Boels, T. Huber \& G. Yang'11].

$$
\begin{aligned}
& G_{1111111111111}^{(\mathrm{df} 2-2)}= \\
& +\frac{1}{\epsilon^{8}}\left[\frac{1}{144}\right]+\frac{1}{\epsilon^{7}}\left[\frac{73}{576}\right]+\frac{1}{\epsilon^{6}}\left[\frac{331}{1152}-\frac{7 \pi^{2}}{216}\right]+\frac{1}{\epsilon^{5}}\left[-\frac{311 \zeta_{3}}{216}-\frac{245 \pi^{2}}{576}-\frac{1765}{1152}\right] \\
& +\frac{1}{\epsilon^{4}}\left[-\frac{1103 \zeta_{3}}{54}-\frac{37 \pi^{4}}{1440}-\frac{917 \pi^{2}}{1728}+\frac{2297}{576}\right]+\frac{1}{\epsilon^{3}}\left[\frac{4021 \pi^{2} \zeta_{3}}{648}-\frac{42053 \zeta_{3}}{1728}-\frac{22667 \zeta_{5}}{360}\right. \\
& \left.-\frac{31327 \pi^{4}}{51840}+\frac{2615 \pi^{2}}{864}-\frac{59}{36}\right]+\frac{1}{\epsilon^{2}}\left[\frac{10784 \zeta_{3}^{2}}{81}+\frac{13595 \pi^{2} \zeta_{3}}{216}+\frac{293837 \zeta_{3}}{1728}-\frac{268139 \zeta_{5}}{360}\right. \\
& \left.-\frac{4901 \pi^{6}}{38880}-\frac{40973 \pi^{4}}{103680}-\frac{347 \pi^{2}}{96}-\frac{21161}{288}\right]+\frac{1}{\epsilon}\left[\frac{1960259 \zeta_{3}^{2}}{1296}+\frac{1037 \pi^{4} \zeta_{3}}{160}+\frac{117521 \pi^{2} \zeta_{3}}{1296}\right. \\
& -\frac{490831 \zeta_{3}}{864}+\frac{508661 \pi^{2} \zeta_{5}}{2160}-\frac{2028557 \zeta_{5}}{2880}-\frac{10749139 \zeta_{7}}{4032}-\frac{3561371 \pi^{6}}{2177280}+\frac{110171 \pi^{4}}{34560} \\
& \left.-\frac{20797 \pi^{2}}{432}+\frac{222407}{288}\right]-\frac{4937 s_{8} \mathbf{a}}{6}-\frac{582209 \pi^{2} \zeta_{3}^{2}}{1944}+\frac{8605981 \zeta_{\mathbf{3}}^{2}}{5184}+\frac{2064401 \zeta_{\mathbf{5}} \zeta_{\mathbf{3}}}{270} \\
& +\frac{3543269 \pi^{4} \zeta_{3}}{77760}-\frac{876841 \pi^{2} \zeta_{3}}{1296}+\frac{325039 \zeta_{3}}{216}+\frac{87229 \pi^{2} \zeta_{5}}{48}+\frac{2528065 \zeta_{5}}{576}-\frac{8894555 \zeta_{7}}{504} \\
& -\frac{17509 \pi^{8}}{1088640}+\frac{579329 \pi^{6}}{2177280}-\frac{547763 \pi^{4}}{51840}+\frac{126427 \pi^{2}}{216}-\frac{1754951}{288}+\mathcal{O}(\epsilon)
\end{aligned}
$$

Our results:

$$
\begin{aligned}
\left.F_{q}^{(n)}\right|_{\left(d_{F}^{a b c d}\right)^{2}}= & n_{f} \frac{\left(d_{F}^{a b c d}\right)^{2}}{N_{F}}\left\{\frac{1}{\epsilon^{2}}\left[\frac{40 \zeta_{5}}{3}+\frac{8 \zeta_{3}}{3}-\frac{4 \pi^{2}}{3}\right]+\frac{1}{\epsilon}\left[-\frac{148 \pi^{6}}{8505}-\frac{152 \zeta_{3}^{2}}{3}-\frac{8 \pi^{2} \zeta_{3}}{3}\right.\right. \\
& \left.+\frac{2720 \zeta_{5}}{9}+\frac{10 \pi^{4}}{27}+\frac{664 \zeta_{3}}{9}-\frac{284 \pi^{2}}{9}+48\right]-1240 \zeta_{7}-\frac{988 \pi^{4} \zeta_{3}}{135} \\
& +\frac{496 \pi^{2} \zeta_{5}}{9}+\frac{10405 \pi^{6}}{10206}+\frac{680 \zeta_{3}^{2}}{9}+\frac{95098 \zeta_{5}}{27}+\frac{46 \pi^{2} \zeta_{3}}{9}+\frac{1888 \pi^{4}}{405} \\
& \left.-\frac{13414 \zeta_{3}}{27}-\frac{10783 \pi^{2}}{27}+\frac{3190}{3}\right\}
\end{aligned}
$$

where $N_{F}=N_{c}=3$.

The cusp and collinear anomalous dimensions

$$
\begin{aligned}
\left.C_{F} \gamma_{\text {cusp }}^{3}\right|_{\left(d_{F}^{a b c d}\right)^{2}}= & n_{f} \frac{\left(d_{F}^{a b c d}\right)^{2}}{N_{F}}\left(-\frac{1280}{3} \zeta_{5}-\frac{256}{3} \zeta_{3}+\frac{128}{3} \pi^{2}\right) \\
\approx & n_{f} \frac{\left(d_{F}^{a b c d}\right)^{2}}{N_{F}}(-123.894910 \ldots), \\
\left.\gamma_{q}^{3}\right|_{\left(d_{F}^{a b c d}\right)^{2}}= & n_{f} \frac{\left(d_{F}^{a b c d}\right)^{2}}{N_{F}}\left(-\frac{592 \pi^{6}}{8505}-\frac{608 \zeta_{3}^{2}}{3}+\frac{10880 \zeta_{5}}{9}-\frac{32 \pi^{2} \zeta_{3}}{3}\right. \\
& \left.+\frac{40 \pi^{4}}{27}+\frac{2656 \zeta_{3}}{9}-\frac{1136 \pi^{2}}{9}+192\right)
\end{aligned}
$$

The results for γ_{q}^{3} and the finite part of the form factor are new.

Agreement with known four-loop partial results [S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren \& A. Vogt'17,18]
for the quark and gluon splitting functions which provided numerical results for cusp anomalous dimensions.

Agreement with known four-loop partial results [S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren \& A. Vogt'17,18]
for the quark and gluon splitting functions which provided numerical results for cusp anomalous dimensions.

Agreement of analytic n_{f} term of the light-like QCD cusp anomalous dimension [J.M. Henn, T. Peraro, M. Stahlhofen \& P. Wasser,19] with our results.

- Essential improvements of the methods of evaluating Feynman integrals were crucial in our project: improvements of IBP reductions, constructing a technique to build up associators.

■ Essential improvements of the methods of evaluating Feynman integrals were crucial in our project: improvements of IBP reductions, constructing a technique to build up associators.

- For the first time, master integrals with twelve propagators corresponding to non-planar graphs were analytically evaluated.

■ Essential improvements of the methods of evaluating Feynman integrals were crucial in our project: improvements of IBP reductions, constructing a technique to build up associators.

- For the first time, master integrals with twelve propagators corresponding to non-planar graphs were analytically evaluated.
- The non-planar graphs involved in the calculation are of genus 1. For graphs of genus 2 and 3 , the situation is more complicated.
- Essential improvements of the methods of evaluating Feynman integrals were crucial in our project: improvements of IBP reductions, constructing a technique to build up associators.
■ For the first time, master integrals with twelve propagators corresponding to non-planar graphs were analytically evaluated.
- The non-planar graphs involved in the calculation are of genus 1. For graphs of genus 2 and 3 , the situation is more complicated.
to be continued

