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in collaboration with Roman Lee, Alexander Smirnov and

Matthias Steinhauser

[R.N. Lee, A. Smirnov, V.S. & M. Steinhauser'19]

The quark-anti-quark-photon form factor with massless quarks
which is obtained from the corresponding vertex function Γµq
via

Fq(q2) = − 1

4(1− ε)q2
Tr
(
q2/ Γµq q1/ γµ

)
,

where q = q1 + q2, and q1 (q2) is the incoming quark
(anti-quark) momentum.

The analytic evaluation of the contribution with the colour
factor (d abcd

F )2 which for a SU(Nc) group is given by

(d abcd
F )2

NA

=
N4

c − 6N2
c + 18

96N2
c
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Four-loop quark form factor with quartic fundamental colour factor

Fq = 1 +
∑
n≥1

(
α0
s

4π

)n(
µ2

−q2 − i0

)nε

F (n)
q ,

The cusp and collinear anomalous dimensions γcusp and γq are
extracted from the pole part of log(Fq) after renormalization
of αs The corresponding n-loop coe�cients are de�ned by

γx =
∑
n≥0

(
αs(µ

2)

4π

)n

γnx ,

with x = cusp or x = q.



Four-loop quark form factor with quartic fundamental colour factor

Fq = 1 +
∑
n≥1

(
α0
s

4π

)n(
µ2

−q2 − i0

)nε

F (n)
q ,

The cusp and collinear anomalous dimensions γcusp and γq are
extracted from the pole part of log(Fq) after renormalization
of αs The corresponding n-loop coe�cients are de�ned by

γx =
∑
n≥0

(
αs(µ

2)

4π

)n

γnx ,

with x = cusp or x = q.



Four-loop quark form factor with quartic fundamental colour factor

Two-loop corrections were evaluated in the end of eighties.

Three-loop results
[P. A. Baikov, K. G. Chetyrkin, A.V. Smirnov, V.S. &
M. Steinhauser'09,
T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli &
C. Studerus'10]
Analytic results for the three missing coe�cients
[R. N. Lee, A. Smirnov & V.S.'10]
Analytic results for the three-loop master integrals up to
weight 8
[R. N. Lee, A. Smirnov & V.S.'10]
motivated by a future four-loop calculation.
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The photon-quark form factor in the large-Nc limit.
[J. Henn, A. Smirnov, V.S. & M. Steinhauser'16;
J. Henn, R. Lee, A. Smirnov, V.S. & M. Steinhauser'16]

Fermionic corrections with three closed quark loops, i.e. n3f
[A. von Manteu�el & R. Schabinger'16]

The n2f contributions to fermionic form factors
[R.N. Lee, A. Smirnov, V.S. & M. Steinhauser'17]

The n2f and nqγnf contributions to the quark and gluon QCD
form factors
[A. von Manteu�el & R. Schabinger'19]
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Our calculation:

Generation of diagrams. Tensor reduction. Expressing all
the Feynman integrals as integrals of several families.

IBP reduction to master integrals using FIRE combined
with LiteRed.

Evaluation of the master integrals with di�erential
equations using a canonical basis.
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We introduce a second mass scale q22 = xq2 in order to use the
powerful method of di�erential equations.

non-planar # 1-scale # 2-scale number of size of tables
family MIs MIs integrals (MB) (1-scale)
df2-2 71 337 14156 98
df2-3 45 244 15278 50
df2-5 41 92 11620 23
df2-6 35 78 11531 18
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We need an IBP reduction of input 1-scale integrals appearing
in the calculation and an IBP reduction of 2-scale integrals
needed to derive di�erential equations.

The IBP reduction of both 2-scale and 1-scale integrals is
complicated.
Complexity can be de�ned as the deviation of a given integral
Ga1,a2,...,a18 considered as a function of 18 integer indices ai
from the corner point of the corresponding sector, i.e. with
indices 1 and 0.
In our calculation, we had in the top sector complexity up to 5
for 1-scale integrals and complexity up to 3 for 2-scale
integrals.
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The standard version of FIRE provided an IBP reduction of all
the 1-scale input integrals and almost all the 2-scale integrals.

It failed for 2-scale integrals needed to derive DE in the top
sector of family df2-2.

Then modular arithmetic was introduced into FIRE using ideas
on which Finred [A. von Manteu�el'16] is based.

Then the missing reduction became feasible ;)
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Some practical recipes

Get rid of spurious denominators using a transition to a
better basis of master integrals.

Choose numerators as propagators, i.e. as squares of
some momenta.

Choose loop momenta in such a way that the total
`length' of the propagators and numerators will be
minimal.
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Di�erential equations as a method to evaluate Feynman
integrals [A.V. Kotikov'91]

Evaluating master integrals by di�erential equations
[E. Remiddi'97, T. Gehrmann & E. Remiddi'00]

Canonical bases [J. Henn'13]

f ′(ε, x) = εA(x) f (x , ε)

where ε = (4− d)/2 and f is a vector of master integrals.
In our case, x = q22/q

2 and

A(x) =
∑
k=0,1

ak

x − x (k)

with x (0) = 0, x (1) = 1.
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To turn to canonical bases we use a private implementation of
the algorithm of Lee [R.N. Lee'14].

Canonical di�erential equations are solved order by order in ε
and results are expressed in terms of harmonic polylogarithms
(HPL) by E. Remiddi and J. Vermaseren.

We choose the point x = 1 in order to �x the boundary
conditions, where our integrals are expressed in terms of 28
master propagator integrals
[P.A. Baikov & K.G. Chetyrkin'10; R.N. Lee, A. Smirnov &
V.S.'11]

The di�erential equations are then used to transport the
information to the point x = 0.
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We solve our di�erential equations asymptotically near the
point x = 0, where terms with x−kε, k = 0, 1, . . . , 8 are
present, and �x these solutions by matching them to our
solution at general x using HPL [D. Maitre'05].

The asymptotic solutions are linear combinations of powers
x−kε with k = 0, 1, . . . , 8. We pick up asymptotic terms with
k = 0 and obtain the so-called naive values of the canonical
master integrals at x = 0.

From the analytic results for the naive part we obtain
analytical results for the required one-scale master integrals
after changing back to the primary basis.
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In this calculation, we proceeded by constructing an associator

which is a matrix that transforms the vector composed of
terms of asymptotic expansion near x = 1 into the vector
composed of terms of asymptotic expansion near x = 0.

This approach is more algorithmic and can be applied to more
complicated non-planar diagrams.

We had to expand the associator up to ε9 (weight 9) for df2-2
and df2-3 since the property of uniform weight is destroyed
when mapping the two-scale master integrals to one-scale
master integrals in the limit x → 0. In the �nal result for the
form factor all weight-nine constants drop out.

Checks: by FIESTA [A. Smirnov] and by comparison with some
partial numerical results [R.H. Boels, T. Huber & G. Yang'11].
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360

−
4901π6
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−

40973π4

103680
−

347π2

96
−

21161

288

]
+

1

ε

[
1960259ζ23

1296
+

1037π4ζ3

160
+

117521π2ζ3

1296

−
490831ζ3

864
+

508661π2ζ5

2160
−

2028557ζ5

2880
−

10749139ζ7

4032
−

3561371π6

2177280
+

110171π4

34560

−
20797π2

432
+

222407

288

]
−

4937s8a

6
−

582209π2ζ23

1944
+

8605981ζ23

5184
+

2064401ζ5ζ3

270

+
3543269π4ζ3

77760
−

876841π2ζ3

1296
+

325039ζ3

216
+

87229π2ζ5

48
+

2528065ζ5

576
−

8894555ζ7

504

−
17509π8

1088640
+

579329π6

2177280
−

547763π4

51840
+

126427π2

216
−

1754951

288
+O(ε)



Four-loop quark form factor with quartic fundamental colour factor

Our results:

F
(n)
q

∣∣∣
(dabcd

F
)2

= nf

(dabcdF )2

NF

{
1

ε2

[
40ζ5

3
+

8ζ3

3
−

4π2

3

]
+

1

ε

[
−

148π6

8505
−

152ζ23
3

−
8π2ζ3

3

+
2720ζ5

9
+

10π4

27
+

664ζ3

9
−

284π2

9
+ 48

]
− 1240ζ7 −

988π4ζ3

135

+
496π2ζ5

9
+

10405π6

10206
+

680ζ23
9

+
95098ζ5

27
+

46π2ζ3

9
+

1888π4

405

−
13414ζ3

27
−

10783π2

27
+

3190

3

}
,

where NF = Nc = 3.



Four-loop quark form factor with quartic fundamental colour factor

The cusp and collinear anomalous dimensions

CFγ
3
cusp

∣∣∣
(dabcd

F
)2

= nf

(dabcdF )2

NF

(
−

1280

3
ζ5 −

256

3
ζ3 +

128

3
π
2

)

≈ nf

(dabcdF )2

NF
(−123.894910 . . .) ,

γ
3
q

∣∣∣
(dabcd

F
)2

= nf

(dabcdF )2

NF

(
−

592π6

8505
−

608ζ23
3

+
10880ζ5

9
−

32π2ζ3

3

+
40π4

27
+

2656ζ3

9
−

1136π2

9
+ 192

)
.

The results for γ3q and the �nite part of the form factor are
new.



Four-loop quark form factor with quartic fundamental colour factor

Agreement with known four-loop partial results
[S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren &
A. Vogt'17,18]
for the quark and gluon splitting functions which provided
numerical results for cusp anomalous dimensions.

Agreement of analytic nf term of the light-like QCD cusp
anomalous dimension
[J.M. Henn, T. Peraro, M. Stahlhofen & P. Wasser,19]
with our results.
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Four-loop quark form factor with quartic fundamental colour factor

Essential improvements of the methods of evaluating
Feynman integrals were crucial in our project:
improvements of IBP reductions, constructing a technique
to build up associators.

For the �rst time, master integrals with twelve
propagators corresponding to non-planar graphs were
analytically evaluated.

The non-planar graphs involved in the calculation are of
genus 1. For graphs of genus 2 and 3, the situation is
more complicated.

to be continued
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