Energy-Energy Correlation At Small Angles

i₂(z

Lance Dixon (SLAC) LD, Ian Moult, HuaXing Zhu, 1905.01310 Amplitudes 2019 Trinity College Dublin 2 July 2019

Why a "cross section" at "Amplitudes"?

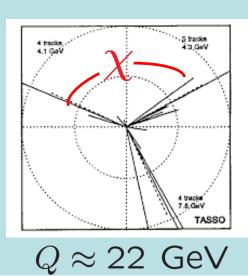
- EEC is measurable for QCD measured for decades, in fact
- Much interest in it for N=4 SYM, not just QCD Hofman, Maldacena, 0803.1467; Belitsky, Hohenegger, Korchemsky, Sokatchev, Zhiboedov, 1309.0769, 1309.1424, 1311.6800, 1409.2502; Henn, Sokatchev, Yan, Zhiboedov, 0903.05314; Kologlu, Kravchuk, Simmons-Duffin, Zhiboedov, 1905.01311; Korchemsky, 1905.01444
- Among simplest infrared-safe event-shapes, can apply "amplitudes" methods
- Observable χ lives on compact domain, $[0, \pi]$: large logarithms on **both** ends can be resummed. **Discuss** $\chi \rightarrow 0$ **limit here**
- Sum rules constrain it \rightarrow avoid direct computations
- As $\chi \rightarrow 0$, probe jet substructure. Generalize to computable jet substructure variables for LHC, correlate multiple small angles Moult, Necib, Thaler, 1609.07483

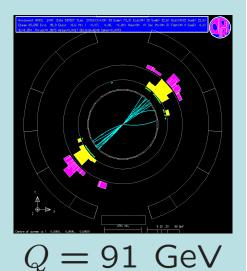
The EEC

Energy-energy correlation (EEC) in e⁺e⁻ annihilation:
 one of first infrared safe event-shapes in QCD, from over
 40 years ago Basham, Brown, Love, S. Ellis, PRD, PRL 1978

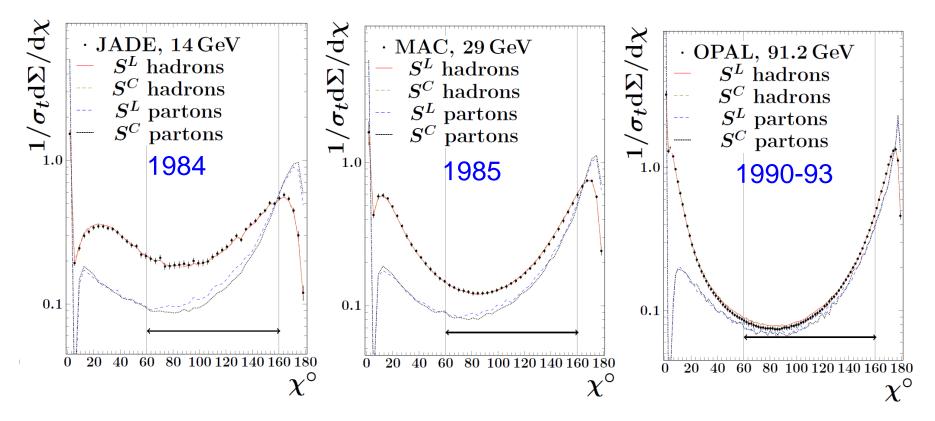
$$\frac{d\Sigma}{d\cos\chi} = \sum_{\text{partons } i,j} \int d\sigma \; \frac{E_i E_j}{Q^2} \delta(\cos\theta_{ij} - \cos\chi)$$

Collinear parton splitting $E_i \rightarrow xE_i + (1-x)E_i$ preserves observable. So does soft emission \rightarrow IR safe Data from wide range of CM energies \rightarrow





Evolution with energy clearly visible

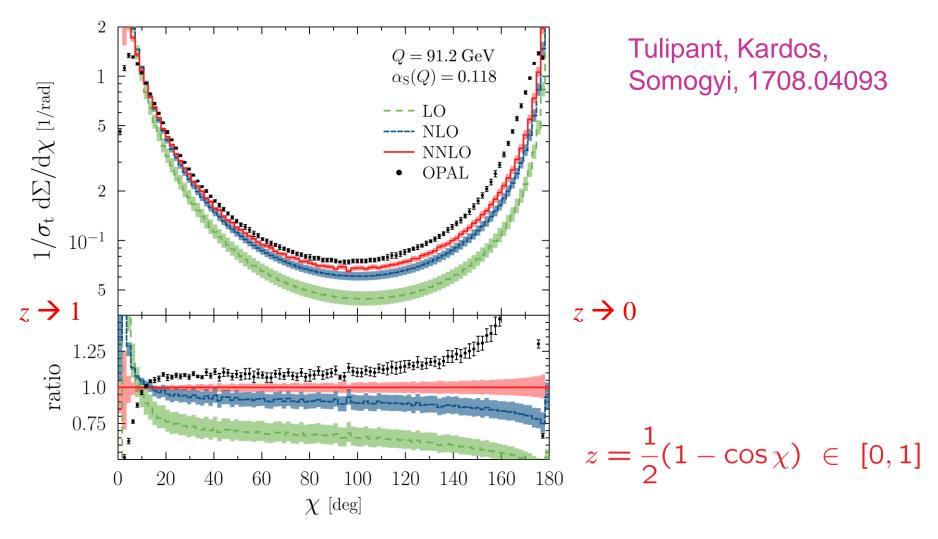


data reviewed recently in Kardos et al, 1804.09146

EEC in QCD at generic angle χ

- Computed at NLO numerically in 1980s and 1990s Richards, WJ Stirling, Ellis, 1982, 1983; Ali, Barreiro, 1982, 1984; Schneider, Kramer, Schierholz, 1984; Falck, Kramer, 1989; Kunszt, Nason, Marchesini, Webber, LEP Yellow Book, 1989; Glover, Sutton, 1994; Clay, Ellis, 1995; Kramer, Spiesberger, 1996; Catani, Seymour, 1996 [EVENT2].
- Computed numerically at NNLO only 3 years ago Del Duca, Duhr, Kardos, Somogyi, Trocsanyi, 1603.08927
- Computed analytically at NLO in QCD last year LD, Luo, Shtabovenko, Yang, Zhu, 1801.03129

NNLO QCD vs. LEP data



L. Dixon EEC at small angles

Use EEC to measure α_s

Kardos, Kluth, Somogyi, Tulipant, Verbytskyi, 1804.09146

- Clean initial state, but nonperturbative hadronization corrections are large, estimate with Monte Carlo.
- Included NNLO + NNLL resummation as $z \rightarrow 1$
- Competitive result:

$$\alpha_s(M_Z) = 0.11750 \pm 0.00018(exp.) \pm 0.00102(hadr.) \pm 0.00257(ren.) \pm 0.00078(res.)$$

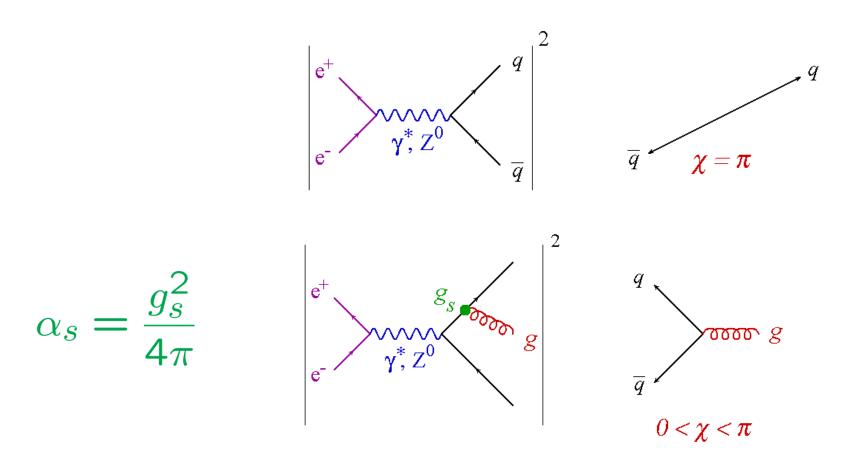
- Still room for theory improvement:
- NNLL $z \rightarrow 0$ resummation (this talk)
- NNNLL $z \rightarrow 1$ resummation (soon)
- [Approximate] NNNLO?

EEC in a CFT

- Energy-momentum tensor is fundamental in any QFT, but also in conformal field theories.
- Alternative methods of study in CFT, especially N=4 SYM:
- Mellin representation of a four-point correlation function → analytic results in N=4 SYM at NLO, NNLO
 Belitsky et al., 1309.0769, 1309.1424, 1311.6800, 1409.2502;
 Henn, Sokatchev, Yan, Zhiboedov,
 1903.05314; Korchemsky, 1905.01444
- Using properties of "ANEC"
 light-ray operators
 Kologlu, Kravchuk, Simmons-Duffin,
 Zhiboedov, 1905.01311

L. Dixon

LO EEC for $0 < \chi < \pi$ is $O(\alpha_s)$



How to compute at NLO in QCD?

Sample NLO real emission contribution LD, Luo, Shtabovenko, Yang, Zhu, 1801.03129

- Interference method with Feynman diagrams (gasp!)
- Reverse unitarity Anastasiou, Melnikov (2003): All momenta \rightarrow loop momenta, put cut momenta on shell, impose $\delta(\cos \theta_{ij} \cos \chi)$
- IBPs/Laporta algorithm Chetyrkin, Tkachov (1981), Laporta (2001)
- Differential equations for master integrals Gehrmann, Remiddi (2000) can all be solved in terms of polylogarithms.
- Same method works also for Higgs $\rightarrow gg \rightarrow$ hadrons Luo, Shtabovenko, Yang, Zhu, 1903.07277

 $\sim \sim \gamma^*$

NLO QCD result

$$\frac{1}{\sigma_0} \frac{d\Sigma}{d\cos\chi} = \frac{\alpha_s(\mu)}{2\pi} A(z) + \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 \left(\beta_0 \log\frac{\mu}{Q} A(z) + B(z)\right) + \mathcal{O}(\alpha_s^3)$$
$$z = \frac{1}{2} (1 - \cos\chi) \in [0, 1]$$

LO result fits on one line: Basham, Brown, Love, S. Ellis, 1978 $A(z) = C_F \frac{3 - 2z}{4(1 - z)z^5} [3z(2 - 3z) + 2(2z^2 - 6z + 3) \ln(1 - z)]$

NLO result much lengthier, but expressible in terms of classical polylogarithms:

$$\operatorname{Li}_{n}(u) = \int_{0}^{u} \frac{dt}{t} \operatorname{Li}_{n-1}(t), \quad \operatorname{Li}_{1}(t) = -\ln(1-t)$$

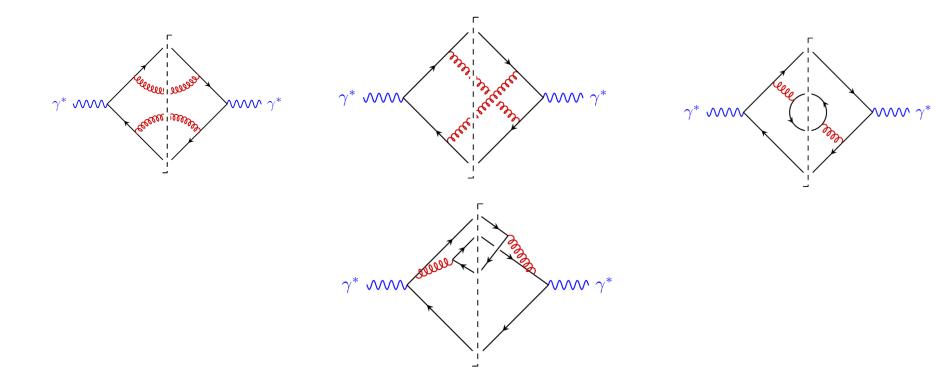
NNLO result? maybe elliptic polylogs? [based on N=4 Henn et al. 0903.05314]

L. Dixon EEC at small angles

Amplitudes 2019 July 2

Color structure of NLO QCD result

 $B(z) = C_F^2 B_{\rm lc}(z) + C_F (C_A - 2C_F) B_{\rm nlc}(z) + C_F N_f T_f B_{N_f}(z)$



Leading color coefficient fits on one page

$$\begin{split} B_{\rm lc} &= + \frac{122400z^7 - 244800z^6 + 157060z^5 - 31000z^4 + 2064z^3 + 72305z^2 - 143577z + 63298}{1440(1-z)z^4} \\ &- \frac{-244800z^9 + 673200z^8 - 667280z^7 + 283140z^6 - 48122z^5 + 2716z^4 - 6201z^3 + 11309z^2 - 9329z + 3007}{720(1-z)z^5} g_1^{(1)} \\ &- \frac{244800z^8 - 550800z^7 + 422480z^6 - 126900z^5 + 13052z^4 - 336z^3 + 17261z^2 - 38295z + 19938}{720(1-z)z^4} g_2^{(1)} \\ &+ \frac{4z^7 + 10z^6 - 17z^5 + 25z^4 - 96z^3 + 296z^2 - 211z + 87}{24(1-z)z^5} g_1^{(2)} \\ &+ \frac{-40800z^8 + 61200z^7 - 28480z^6 + 4040z^5 - 320z^4 - 160z^3 + 1126z^2 - 4726z + 3323}{120(z^5} g_2^{(2)} \\ &- \frac{1 - 11z}{48z^{7/2}} g_3^{(2)} - \frac{120z^6 + 60z^5 + 160z^4 - 2246z^3 + 8812z^2 - 10159z + 4193}{120(1-z)z^5} g_4^{(2)} \\ &- 2 \left(85z^4 - 170z^3 + 116z^2 - 31z + 3\right) g_1^{(3)} + \frac{-4z^3 + 18z^2 - 21z + 5}{6(1-z)z^5} g_2^{(3)} + \frac{z^2 + 1}{12(1-z)} g_3^{(3)} , \end{split} \\ \text{where} \qquad g_1^{(1)} = \log(1-z) , \qquad g_2^{(1)} = \log(z) , \qquad g_1^{(2)} = 2(\text{Li}_2(z) + \zeta_2) + \log^2(1-z) , \\ g_2^{(2)} = \text{Li}_2(1-z) - \text{Li}_2(z) , \qquad g_3^{(2)} = -2 \text{Li}_2 \left(-\sqrt{z} \right) + 2 \text{Li}_2 \left(\sqrt{z} \right) + \log \left(\frac{1 - \sqrt{z}}{1 + \sqrt{z}} \right) \log(z) , \qquad g_4^{(2)} = \zeta_2 \\ &\qquad g_1^{(3)} = -6 \left[\text{Li}_3 \left(-\frac{z}{1-z} \right) - \zeta_3 \right] - \log \left(\frac{z}{1-z} \right) \left(2(\text{Li}_2(z) + \zeta_2) + \log^2(1-z) \right) , \\ &\qquad g_2^{(3)} = -12 \left[\text{Li}_3(z) + \text{Li}_3 \left(-\frac{z}{1-z} \right) \right] + 6 \text{Li}_2(z) \log(1-z) + \log^3(1-z) , \\ &\qquad g_3^{(3)} = 6 \log(1-z) \left(\text{Li}_2(z) - \zeta_2 \right) - 12 \text{Li}_3(z) + \log^3(1-z) . \end{aligned}$$

NLO, intra-jet limit, $z \rightarrow 0$

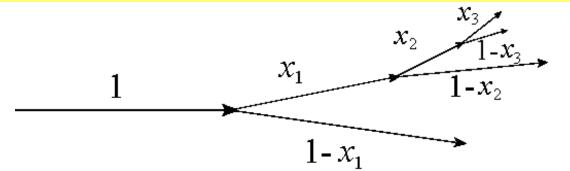
$$\begin{aligned} \mathsf{LL} \\ B(z) &= C_F \bigg\{ \frac{1}{z} \bigg[\ln z \left(-\frac{107C_A}{120} + \frac{25C_F}{32} + \frac{53N_f T_f}{240} \right) + C_A \left(-\frac{25\zeta_2}{12} + \frac{\zeta_3}{2} + \frac{17683}{2700} \right) \\ &+ C_F \left(\frac{43\zeta_2}{12} - \zeta_3 - \frac{8263}{1728} \right) - \frac{4913N_f T_f}{3600} \bigg] \bullet \mathsf{NLL} \\ &+ \ln z \bigg[C_A \left(\frac{33\zeta_2}{2} - \frac{703439}{25200} \right) + C_F \left(\frac{42109}{1200} - 21\zeta_2 \right) + N_f T_f \left(\frac{86501}{12600} - 4\zeta_2 \right) \bigg] \\ &+ C_A \left(\frac{213\zeta_2}{5} - \frac{101\zeta_3}{2} - \frac{26986007}{5292000} \right) + C_F \left(-\frac{1541\zeta_2}{30} + 65\zeta_3 + \frac{18563}{2700} \right) \\ &+ N_f T_f \left(-\frac{46\zeta_2}{3} + 12\zeta_3 + \frac{2987627}{330750} \right) \bigg\} + \mathcal{O}(z) \end{aligned}$$

Single log behavior $\ln^{L} z/z$ characteristic of pure collinear observable

"Jet Calculus" for LL resummation

- Collinear dominated.
- Only a single Mellin moment N=3 of time-like splitting function (twist 2 anomalous dimension) $\gamma_{ij}^{(N)} \equiv -\int_{0}^{1} dx \, x^{N-1} P_{ij}(x)$

Konishi, Ukawa, Veneziano Phys.Lett.1978,1979; Richards, Stirling, Ellis, NPB229, 317, 1983



Energy weighting $\rightarrow \int_0^1 dx \, x(1-x) \, P_{ij}(x) \rightarrow -\int_0^1 dx \, x^2 \, P_{ij}(x) \equiv \gamma_{ij}^{(N=3)}$

Momentum sum rule controls x^1 term, \rightarrow can drop it. $\int_0^1 dx \, x \, P_{ij}(x) \equiv -\gamma_{ij}^{(N=2)}$

L. Dixon EEC at small angles

Amplitudes 2019 July 2 15

LL resummed formula

Richards, Stirling, Ellis, NPB229, 317, 1983

$$\frac{1}{\sigma_0} \frac{d\sigma}{d\cos\chi} = \frac{\alpha_s(\sqrt{z}Q)}{16\pi z} \sum_{i,j=q,g} \gamma_{ij}^{(0)} \left[\frac{\alpha_s(\sqrt{z}Q)}{\alpha_s(Q)}\right]_{jq}^{-\gamma^{(0)}/\beta_0}$$
$$\gamma_{ij}^{(0)} = \left[\begin{array}{cc} \frac{25}{6}C_F & -\frac{7}{15}n_f\\ -\frac{7}{6}C_F & \frac{14}{5}C_A + \frac{2}{3}n_f \end{array}\right] \qquad \beta_0 = \frac{11}{3}C_A - \frac{2}{3}n_f$$

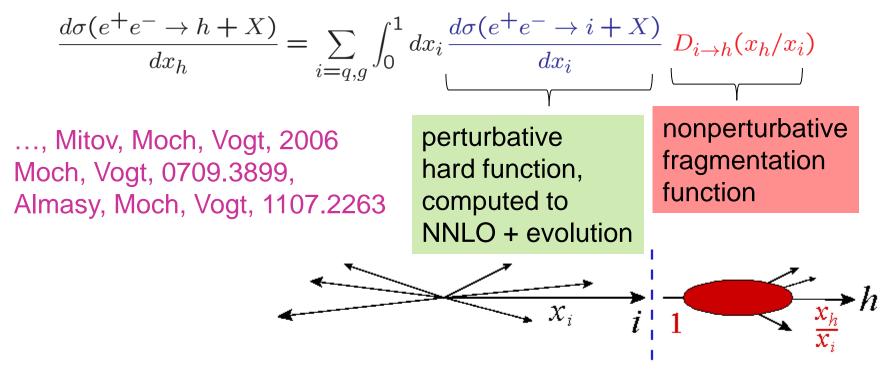
One-loop (LO) N=3 time-like moments

 $\beta_0 = \frac{1}{3}C_A - \frac{1}{3}n_f$

Beyond LL as $z \rightarrow 0$

LD, Moult, Zhu, 1905.01310

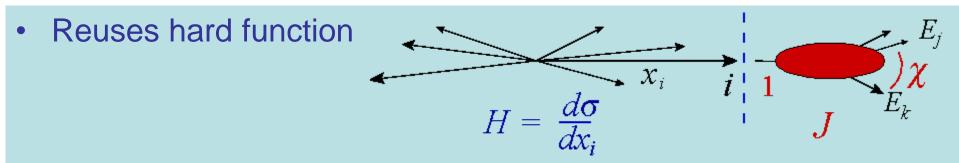
• Factorize on single parton states, similar to production of identified hadrons *h* with momentum $p_h = x \times Q/2$



All orders EEC factorization

Cumulant
$$\Sigma\left(z, \ln\frac{Q^2}{\mu^2}, \alpha_s(\mu)\right) \equiv \frac{1}{\sigma_0} \int_0^z dz' \frac{d\sigma}{dz} \left(z', \ln\frac{Q^2}{\mu^2}, \alpha_s(\mu)\right)$$

$$\Sigma\left(\mathbf{z}, \ln\frac{Q^2}{\mu^2}, \alpha_s(\mu)\right) = \int_0^1 dx \, x^2 \vec{J} \left(\ln\frac{\mathbf{z}x^2 Q^2}{\mu^2}, \alpha_s(\mu)\right) \cdot \vec{H} \left(\ln\frac{Q^2}{\mu^2}, \alpha_s(\mu)\right)$$



- Replaces nonperturbative fragmentation function with perturbative jet function J which includes the small angle EEC measurement
- J depends on its only physical scale: $q_T^2 \approx (\chi x Q/2)^2 \approx z x^2 Q^2$

Evolution of jet function

- To resum large logs, evolve jet function from its natural scale, $\mu = \sqrt{z}Q$ up to natural scale of hard function, $\mu = Q$
- Hard function evolves with time-like splitting kernel, $P_T(y, \mu)$:

$$\frac{d\vec{H}(x)}{d\ln\mu^2} = -\int_x^1 \frac{dy}{y} \hat{P}_T(y,\mu) \cdot \vec{H}(x/y)$$

- Σ is RGE invariant, i.e. independent of μ
- Leads to evolution equation for *J*:

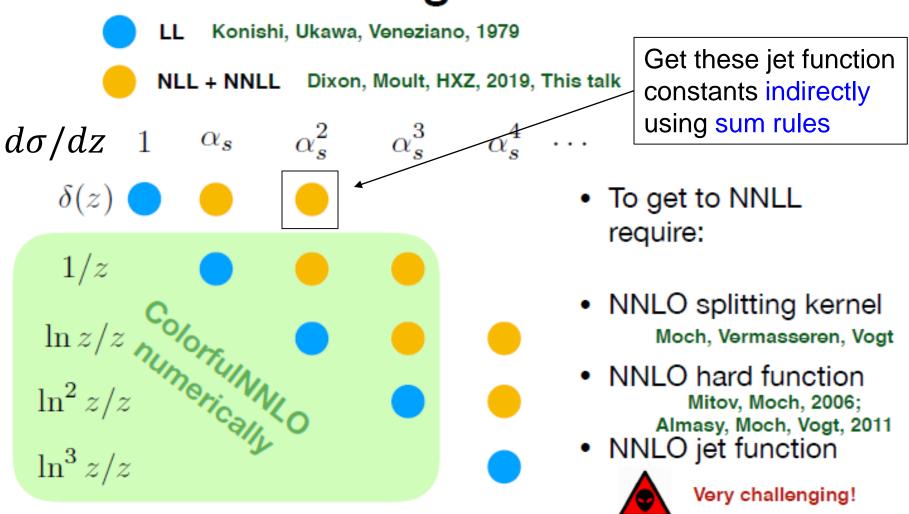
$$\frac{d\vec{J}\left(\ln\frac{zQ^2}{\mu^2},\alpha_s\right)}{d\ln\mu^2} = \int_0^1 dy \, y^2 \, \vec{J}\left(\ln\frac{zy^2Q^2}{\mu^2}\right) \cdot \hat{P}_T(y,\mu)$$

- LL evolution only uses N=3 time-like moments (y^2)
- Beyond LL, need "nearby" moments, $\ln y \leftrightarrow \frac{\partial}{\partial N}$

L. Dixon EEC at small angles

Amplitudes 2019 July 2

Counting the order



Sum rules

• Energy conservation, $Q^2 = (\sum E_i)^2 = \sum E_i E_j$ implies sum rule,

$$\int_0^1 dz \frac{d\sigma}{dz} = \sigma_{\rm tot}$$

Momentum conservation involving

$$p_i \cdot p_j = E_i E_j (1 - \cos \chi)$$

→ second sum rule Korchemsky, 1905.01444, Kologlu et al., 1905.01311

$$\int_0^1 dz \, z \, \frac{d\sigma}{dz} = \int_0^1 dz \, (1-z) \, \frac{d\sigma}{dz} = \frac{1}{2} \sigma_{\text{tot}}$$

Use sum rule(s) to get $\alpha_s^2 \delta(z)$

- σ_{tot} known, for e⁺e⁻ and Higgs, e.g. Herzog, Ruijl, Ueda, Vermaseren, Vogt, 1707.01044
- First sum rule needs both $\delta(z)$ and $\delta(1-z)$ terms
- Second sum rule decouples them, although $\alpha_s^2 \delta(1-z)$ term also known Zhu, et al. (2019)
- α_s^2 distribution for e⁺e⁻ and Higgs for 0 < z < 1 known analytically. Integrate it, use PSLQ to get in terms of ζ_n
- $\delta(z)$ coefficients involve sum of *H* and *J*.
- Get *H* from Almasy, Mitov, Moch, Vogt
- \rightarrow Use two $\delta(z)$ coefficients to fix the two 2-loop J_q , J_q

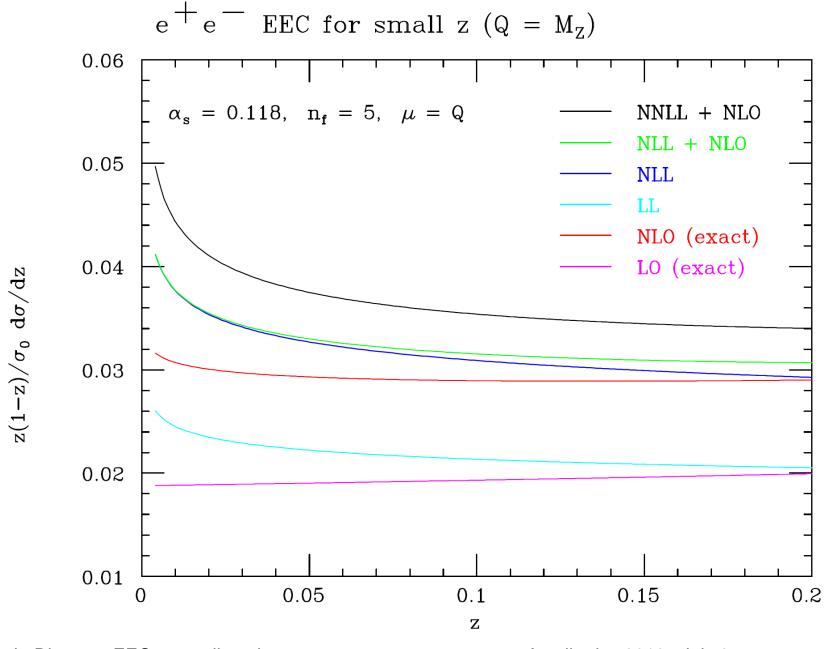
Two loop jet constants in QCD

$$\begin{aligned} j_2^q &= C_F n_f \left(\frac{9}{5}\zeta_2 + \frac{703847}{24000}\right) + C_F C_A \left(-76\zeta_4 + 280\zeta_3 + \frac{1063}{15}\zeta_2 - \frac{164883727}{324000}\right) \\ &+ C_F^2 \left(152\zeta_4 - 478\zeta_3 - 106\zeta_2 + \frac{3498505}{5184}\right) , \\ j_2^g &= n_f^2 \left(-\frac{8}{15}\zeta_2 + \frac{2344}{1125}\right) + C_F n_f \left(4\zeta_3 + \frac{14}{5}\zeta_2 - \frac{1528667}{108000}\right) \\ &+ C_A n_f \left(\frac{44}{5}\zeta_3 - \frac{127}{25}\zeta_2 + \frac{68111303}{1620000}\right) + C_A^2 \left(76\zeta_4 - \frac{1054}{5}\zeta_3 - \frac{2159}{75}\zeta_2 + \frac{133639871}{810000}\right) \end{aligned}$$

Did not need to compute directly, thanks to sum rule(s)!

Solve jet evolution for QCD

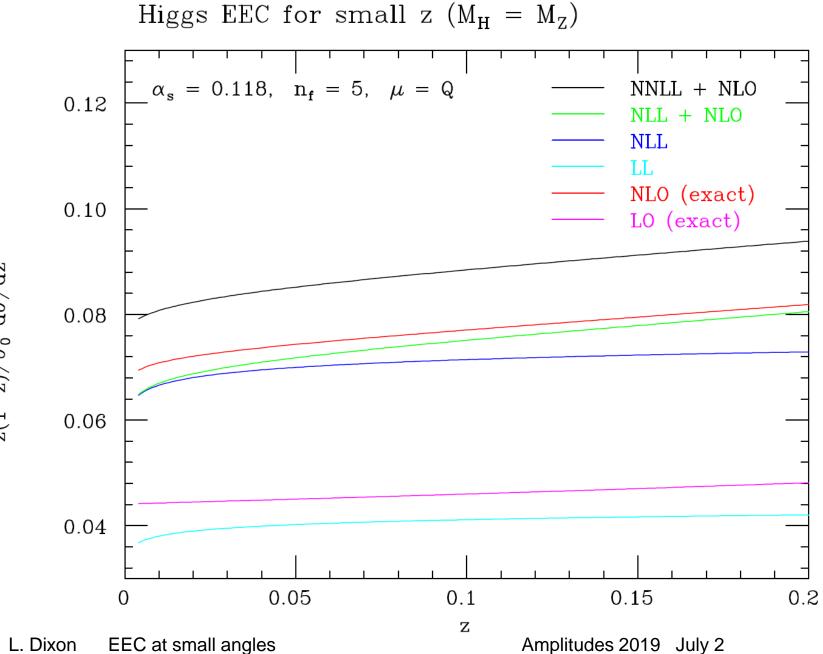
- 2 x 2 equation coupling J_q, J_g
- For z > 0.004, solve order by order through 9 loops
- Do for both e⁺e⁻ and Higgs to illustrate different behavior of quark and gluon jets.
- Competition between β function and splitting plays out very differently for quarks and gluons, $C_F = \frac{4}{3}$ versus $C_A = 3$.



L. Dixon EEC at small angles

Amplitudes 2019 July 2

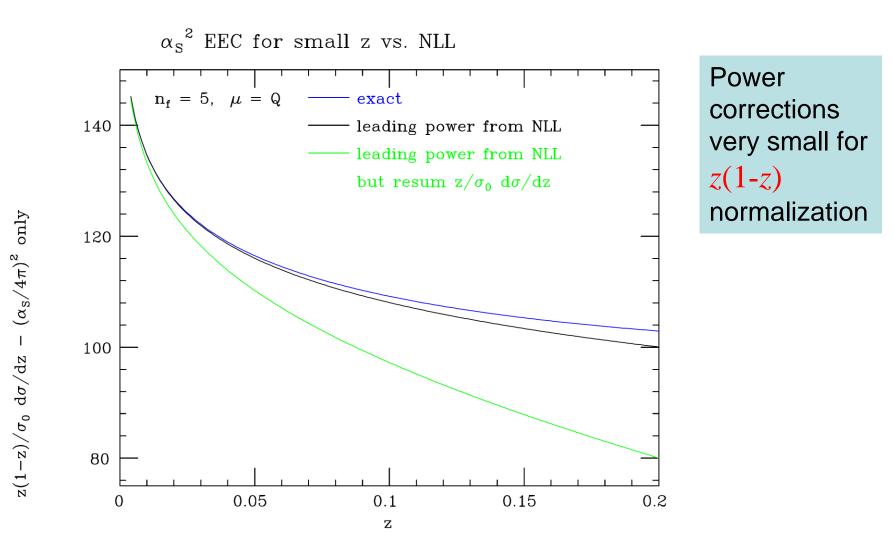
25



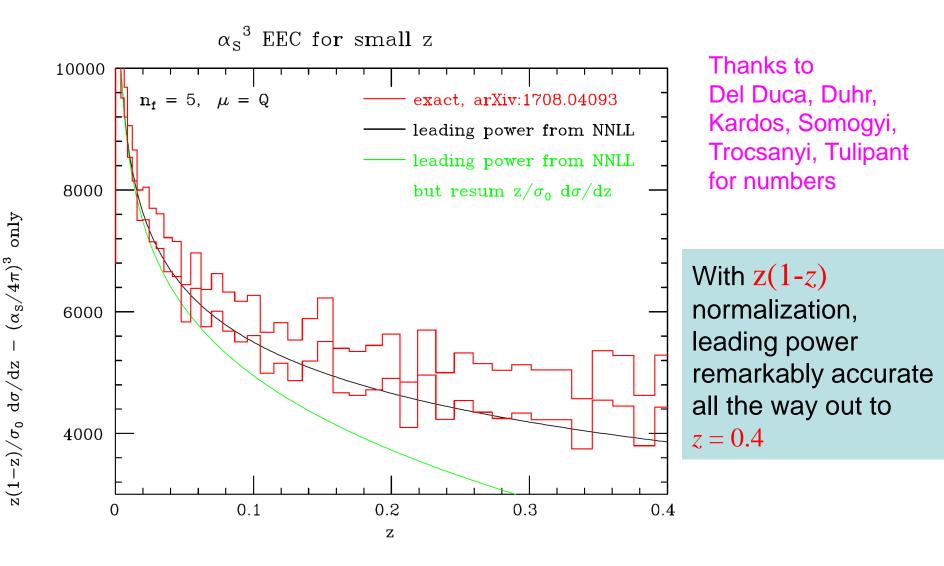
 $z(1-z)/\sigma_0~d\sigma/dz$

26

Comparison with fixed order at α_s^2



Comparison with fixed order at α_s^3



Jet evolution for N=4 SYM

• Scale invariance \rightarrow solution for N=4 SYM a pure power law:

$$J\left(\frac{zQ^2}{\mu^2},\alpha_s\right) = C_J(\alpha_s)\left(\frac{zQ^2}{\mu^2}\right)^{\gamma_J^{\mathcal{N}=4}(\alpha_s)}$$

• Insert into evolution equation, find that

$$2\gamma_J^{\mathcal{N}=4} = -2\int_0^1 dy \, y^{2+2\gamma_J^{\mathcal{N}=4}} P_{T,\text{uni.}}(y) \\ = 2\gamma_T^{\mathcal{N}=4} (N = 1 + 2\gamma_J^{\mathcal{N}=4})$$

Using "time-like space-like reciprocity relation" Drell, Levy, Yan (1969), Gribov, Lipatov (1972), ..., Basso, Korchemsky, hep-th/0612247 this is actually the space-like N=3 moment Caron-Huot (N=1 for "universal" N=4 SYM anomalous dimension):

$$\gamma_J^{\mathcal{N}=4} = \gamma_S^{\mathcal{N}=4} (N=1)$$

N=4 SYM result

• Jet function solution leads to:

$$\Sigma(z) = \frac{1}{2} C(\alpha_s) \, z^{\gamma_J^{\mathcal{N}=4}(\alpha_s)}$$

Space-like anomalous dimension

$$\gamma_J^{\mathcal{N}=4}(\alpha_s) = \gamma_S^{\mathcal{N}=4}(N=1,\alpha_s)$$

extracted through 4 loops from

Kotikov, Lipatov, Rej, Staudacher, Velizhanin, 0704.3586; Bajnok, Janik, Lukowski, 0811.4448

- Sum rule at α_s^2 gives: $C(\alpha_s) = 1 \frac{C_A \alpha_s}{\pi} + \left(\frac{11}{4}\zeta_4 3\zeta_2 + 7\right) \left(\frac{C_A \alpha_s}{\pi}\right)^2 + \mathcal{O}(\alpha_s^3)$
- Result agrees precisely with recent "space-like" analysis Kologlu et al., 1905.01311; Korchemsky, 1905.01444
- And with z → 0 limit of NNLO result Henn, Sokatchev, Yan, Zhiboedov, 0903.05314

L. Dixon EEC at small angles

Conclusions

- All order time-like factorization formula for small angle EEC for generic theories.
- Explicitly computed through NNLL, two orders more accurate than previous jet calculus approach.
- Quite different behavior for quarks (e⁺e⁻) vs. gluons (Higgs)
- Good agreement with ColorfulNNLO results at $O(\alpha_s^3)$
- Time-like/space-like reciprocity of twist 2 anomalous dimensions relates formula to other N=4 SYM approaches

Outlook

- May be able to go to NNNLL in QCD, at least approximately. Also approximate NNNLO?
- Same jet functions also apply to suitable "jet substructure" observables at LHC, could use to discriminate quark/gluon jets at LHC.
- May eventually lead to more precise value of α_s, as well as more precise jet substructure understanding at LHC

Extra Slides

Two loop jet constants in N=1 SYM

$$\begin{aligned} j_2^q &= C_F n_f \left(\frac{9}{5}\zeta_2 + \frac{703847}{24000}\right) + C_F C_A \left(-76\zeta_4 + 280\zeta_3 + \frac{1063}{15}\zeta_2 - \frac{164883727}{324000}\right) \\ &+ C_F^2 \left(152\zeta_4 - 478\zeta_3 - 106\zeta_2 + \frac{3498505}{5184}\right) , \\ j_2^g &= n_f^2 \left(-\frac{8}{15}\zeta_2 + \frac{2344}{1125}\right) + C_F n_f \left(4\zeta_3 + \frac{14}{5}\zeta_2 - \frac{1528667}{108000}\right) \\ &+ C_A n_f \left(\frac{44}{5}\zeta_3 - \frac{127}{25}\zeta_2 + \frac{68111303}{1620000}\right) + C_A^2 \left(76\zeta_4 - \frac{1054}{5}\zeta_3 - \frac{2159}{75}\zeta_2 + \frac{133639871}{810000}\right) \end{aligned}$$

• In pure N=1 SYM ($C_F \rightarrow C_A$, $n_f \rightarrow C_A$), collapse to:

$$j_{2}^{q, \mathcal{N}=1} = C_{A}^{2} \Big(76 \zeta_{4} - 198 \zeta_{3} - \frac{100}{3} \zeta_{2} + \frac{78117}{400} \Big)$$

$$j_{2}^{g, \mathcal{N}=1} = C_{A}^{2} \Big(76 \zeta_{4} - 198 \zeta_{3} - \frac{158}{5} \zeta_{2} + \frac{263197}{1350} \Big)$$

L. Dixon EEC at small angles

Solving jet evolution for N=1 SYM

• We can do it exactly at NNLL, because 2 x 2 matrix equation is effectively 1 x 1. Solution is: $\Sigma_{\text{NNLL}}^{\mathcal{N}=1}(z) = c_1^S(\alpha_s) + c_2^S(\alpha_s) \ln z + c_3^S(\alpha_s) \frac{\ln z}{1 + \beta_0 a_s \ln z} + c_4^S(\alpha_s) \ln[1 + \beta_0 a_s \ln z] + c_5^S(\alpha_s) \ln\left(1 - 2C_A a_s \frac{\ln[1 + \beta_0 a_s \ln z]}{1 + \beta_0 a_s \ln z}\right)$

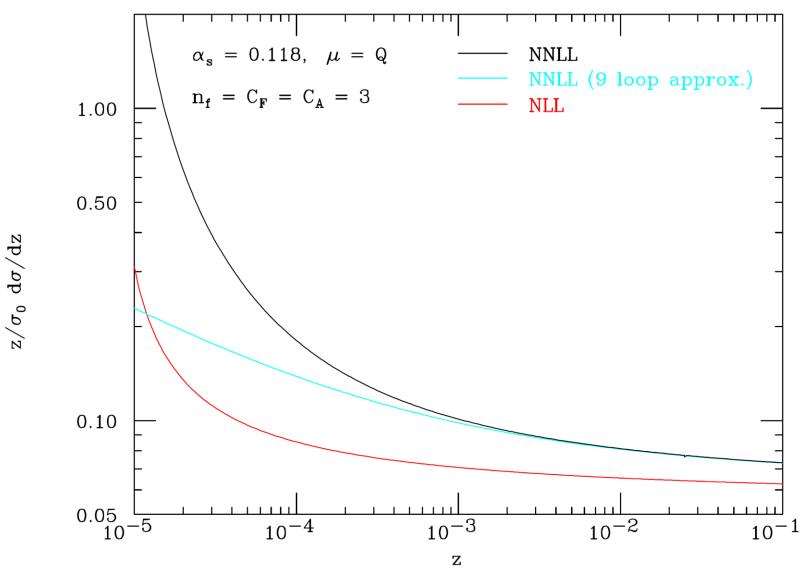
$$c_{1}^{H} = \frac{1}{2} + \frac{69}{8}a + a^{2} \left(22\zeta_{4} - 66\zeta_{3} - \frac{95}{3}\zeta_{2} + \frac{81949}{432} \right),$$

$$c_{1}^{\gamma} = \frac{1}{2} + \frac{13}{24}a + a^{2} \left(22\zeta_{4} - 44\zeta_{3} + \frac{22}{9}\zeta_{2} + \frac{2911}{162} \right),$$

etc., $a = \frac{C_{A}\alpha_{S}}{4\pi}$

L. Dixon EEC at small angles

Amplitudes 2019 July 2

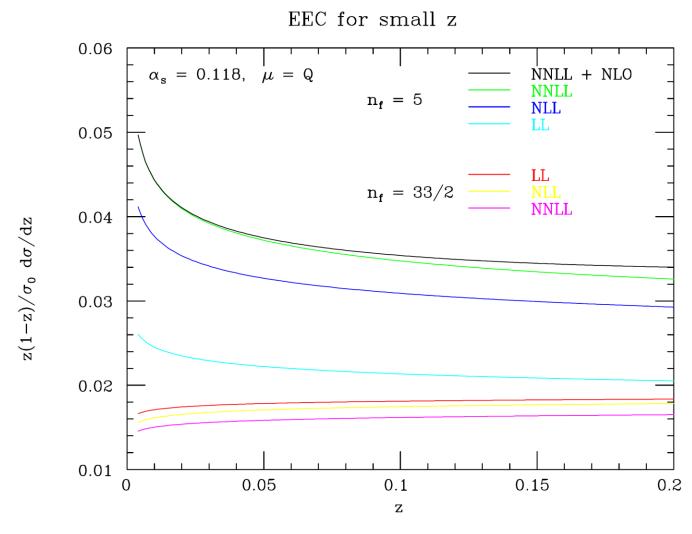


L. Dixon EEC at small angles

Amplitudes 2019 July 2

36

Near Banks-Zaks fixed point



Amplitudes 2019 July 2

Analytic properties of QCD moments

• With analytic formulae, compute the integrals

$$B_{N} = \int_{0}^{1} dz \ z^{N} B(z)$$

numerically to high accuracy, for each color coefficient

• Using PSLQ, it is always of the form

$$B_N = r_N^{(4)} \zeta(4) + r_N^{(3)} \zeta(3) + r_N^{(2)} \zeta(2) + r_N^{(0)}$$

where the $r_N^{(w)}$ are rational numbers.

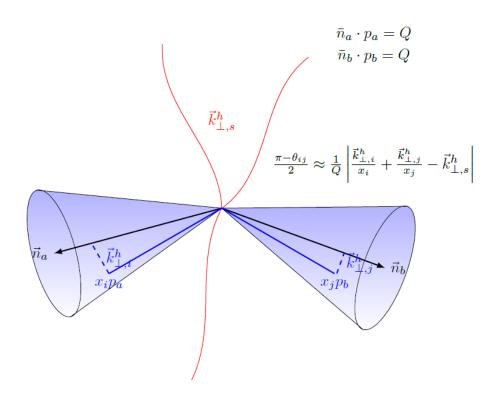
- **E.g.** $B_3(C_A) = -\frac{207}{2}\zeta(4) + \frac{14902}{35}\zeta(3) \frac{553}{450}\zeta(2) \frac{2369041}{5040}$
- Could they be zeta values at higher loop orders too?
- Expression for general N in terms of $\psi(N)$ functions?

Back-to-back limit, $z \rightarrow 1$

$$B(z) = C_F \left\{ \frac{1}{1-z} \left[\frac{1}{2} C_F \ln^3(1-z) + \ln^2(1-z) \left(\frac{11C_A}{12} + \frac{9C_F}{4} - \frac{N_f T_f}{3} \right) + \ln(1-z) \left(C_A \left(\frac{\zeta_2}{2} - \frac{35}{72} \right) + C_F \left(\zeta_2 + \frac{17}{4} \right) + \frac{N_f T_f}{18} \right) + C_A \left(\frac{11\zeta_2}{4} + \frac{3\zeta_3}{2} - \frac{35}{16} \right) + C_F \left(3\zeta_2 - \zeta_3 + \frac{45}{16} \right) + N_f T_f \left(\frac{3}{4} - \zeta_2 \right) \right] + \left(\frac{C_A}{2} + C_F \right) \ln^3(1-z) + \ln^2(1-z) \left(\frac{27C_A}{8} + \frac{13C_F}{2} - \frac{N_f T_f}{2} \right) + \ln(1-z) \left[C_A \left(22\zeta_2 - \frac{2011}{72} \right) + C_F (47 - 19\zeta_2) + N_f T_f \left(\frac{361}{36} - 4\zeta_2 \right) \right] + C_A \left(\frac{6347\zeta_2}{80} - 21\zeta_2 \ln 2 - \frac{137\zeta_3}{4} - \frac{3305}{72} \right) + C_F \left(-\frac{1727\zeta_2}{20} + 42\zeta_2 \ln 2 + \frac{121\zeta_3}{2} + \frac{3437}{96} \right) + N_f T_f \left(-\frac{1747\zeta_2}{120} + 12\zeta_3 + \frac{2099}{144} \right) \right\} + \mathcal{O}(1-z)$$

- Double log behavior, $\ln^{2L+1}(1-z)/(1-z)$ characteristic of Sudakov suppression from soft/collinear gluon emission. Collins, Soper,...
- Coefficients of leading-power terms agree precisely with NNLL resummation DeFlorian, Grazzini, hep-ph/0407241

$z \rightarrow 1$ (cont.)



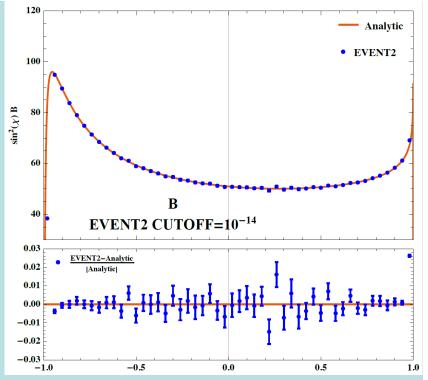
Moult, Zhu, 1801.02627

Soft gluons contribute, but only via recoil, by deflecting the hard quark jet

- Factorization theorem recently proved: Relate EEC to backto-back production of identified hadrons Collins, Soper 1981-1982
- Should allow NNNLL resummation soon

Why analytic?

- Validate accuracy of numerical QCD results.
- Compare with analytic NLO result in N=4 SYM
 Belitsky, Hohenegger, Korchemsky,
 Sokatchev, Zhiboedov,
 1309.0769, 1309.1424, 1311.6800



• Study limits as $\chi \rightarrow 0,\pi$ to aid resummation of large logarithms there.

Belitsky et al. method for N=4 SYM

- Very different from "QCD method", which uses dimensional regularization; divergences cancel between virtual and real
- Exploit conformal invariance of 4-point function with two "energy flow operators"

$$\langle \mathcal{E}(\vec{n}_1)\mathcal{E}(\vec{n}_2)\rangle_q = \int d^4x \,\mathrm{e}^{iq\cdot x} \langle 0|O^{\dagger}(x)\mathcal{E}(\vec{n}_1)\mathcal{E}(\vec{n}_2)O(0)|0\rangle$$

$$\mathcal{E}(\vec{n}) = \int_{-\infty}^{\infty} d\tau \lim_{r \to \infty} r^2 n^i T_{0i}(t = \tau + r, r\vec{n})$$

- Analytically continue from Euclidean to physical region using double
 Mellin transform
- No infrared divergences at any step!
- Recently pushed to NNLO (semi-analytic): Henn, Sokatchev, Yan and Zhiboedov, 1903.05314