Loop recursion relation and dual conformal symmetry for form factors

based on 1812.09001 and 1812.10468 with A. Brandhuber, R. Panerai and G. Travaglini

Lorenzo Bianchi

July $4^{\text {th }}, 2019$.
Amplitudes, Trinity College Dublin

Motivation and definitions

- Progress for the computation of scattering amplitudes using on-shell techniques.
- Many of these developments were triggered by the study of planar $\mathcal{N}=4$ SYM.
- Can we extend these techniques to off-shell quantities?

Motivation and definitions

- Progress for the computation of scattering amplitudes using on-shell techniques.
- Many of these developments were triggered by the study of planar $\mathcal{N}=4$ SYM.
- Can we extend these techniques to off-shell quantities?

Scattering amplitudes

$$
A_{n}=\langle 1, \cdots, n \mid 0\rangle
$$

Form factors

$$
F_{n}(q)=\int d^{4} x e^{i q x}\langle 1, \cdots, n| \mathcal{O}(x)|0\rangle
$$

Examples of form factors

- $e^{+} e^{-}$annihilation and deep inelastic scattering

Examples of form factors

- $e^{+} e^{-}$annihilation and deep inelastic scattering

- Higgs effective theory

$$
\mathcal{O}=\operatorname{Tr}\left\{F^{\mu \nu} F_{\mu \nu}\right\}
$$

Form factors in $\mathcal{N}=4$ SYM

\checkmark Strong coupling [Alday, Maldacena, 2007; Maldacena, Zhiboedov, 2010]
\checkmark Tree-level BCFW recursion relation [Brandhuber, Gurdogan, Mooney, Travaglini, Yang, 2011]
\checkmark Generalized unitarity [Brandhuber, Spence, Travaglini, Yang, 2010]
\checkmark Color-kinematic duality [Boels, Kniehl, Tarasov, Yang, 2012]
\checkmark On-shell diagrams and Grassmanian [Frassek, Meidinger, Nandan, Wilhelm, 2015]
\checkmark Twistor-space formulation [Koster, Mitev, Staudacher, Wilhelm, 2016]
\checkmark Scattering equations [He, Zhang, 2016; Brandhuber, Hughes, Panerai, Spence, Travaglini, 2016]
\checkmark Non-protected operators [Loebbert, Nandan, Sieg, Wilhelm, Yang, 2015-16; Brandhuber, Kostacinska, Penante, Travaglini, 2017-18]

Form factors in $\mathcal{N}=4$ SYM

\checkmark Strong coupling [Alday, Maldacena, 2007; Maldacena, Zhiboedov, 2010]
\checkmark Tree-level BCFW recursion relation [Brandhuber, Gurdogan, Mooney, Travaglini, Yang, 2011]
\checkmark Generalized unitarity [Brandhuber, Spence, Travaglini, Yang, 2010]
\checkmark Color-kinematic duality [Boels, Kniehl, Tarasov, Yang, 2012]
\checkmark On-shell diagrams and Grassmanian [Frassek, Meidinger, Nandan, Wilhelm, 2015]
\checkmark Twistor-space formulation [Koster, Mitev, Staudacher, Wilhelm, 2016]
\checkmark Scattering equations [He, Zhang, 2016; Brandhuber, Hughes, Panerai, Spence, Travaglini, 2016]
\checkmark Non-protected operators [Loebbert, Nandan, Sieg, Wilhelm, Yang, 2015-16; Brandhuber, Kostacinska, Penante, Travaglini, 2017-18]
Results for chiral primary $\operatorname{Tr}\left(\phi^{2}\right)$ in $\mathcal{N}=4$ SYM

loops \legs	2	3	4	5	6
0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1	\checkmark	\checkmark	\checkmark	MHV	MHV
2	\checkmark	\checkmark			
3	\checkmark				
4	\checkmark				

[van Neerven, 1986; Brandhuber, Gurdogan, Mooney, Travaglini, Yang, 2011; Brandhuber, Spence, Travaglini, Yang, 2010; Bork, Kazakov, Vartanov, 2010; Bork, 2012; Brandhuber, Travaglini, Yang, 2012; Gehrmann, Henn, Huber, 2012; Brandhuber, Penante, Travaglini, Wen, 2014; Boels, Huber, Yang, 2018]

Form factors in $\mathcal{N}=4$ SYM

\checkmark Strong coupling [Alday, Maldacena, 2007; Maldacena, Zhiboedov, 2010]
\checkmark Tree-level BCFW recursion relation [Brandhuber, Gurdogan, Mooney, Travaglini, Yang, 2011]
\checkmark Generalized unitarity [Brandhuber, Spence, Travaglini, Yang, 2010]
\checkmark Color-kinematic duality [Boels, Kniehl, Tarasov, Yang, 2012]
\checkmark On-shell diagrams and Grassmanian [Frassek, Meidinger, Nandan, Wilhelm, 2015]
\checkmark Twistor-space formulation [Koster, Mitev, Staudacher, Wilhelm, 2016]
\checkmark Scattering equations [He, Zhang, 2016; Brandhuber, Hughes, Panerai, Spence, Travaglini, 2016]
\checkmark Non-protected operators [Loebbert, Nandan, Sieg, Wilhelm, Yang, 2015-16; Brandhuber, Kostacinska, Penante, Travaglini, 2017-18]
\checkmark Loop-level recursion relation [LB, Brandhuber, Panerai, Travaglini, 2018]
\checkmark Dual conformal invariance [LB, Brandhuber, Panerai, Travaglini, 2018]

Loop recursion and dual conformal invariance

- The discovery of dual conformal invariance for scattering amplitudes goes back 13 years [Drummond, Henn, Smirnov, Sokatchev, 2006; Alday, Maldacena, 2007; Drummond, Henn, Korchemsky, Sokatchev, 2007; Brandhuber, Heslop, Travaglini, 2007, 2008]
- Recursion relation for loop integrand was found in 2010 [Caron-Huot, 2010; Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka, 2010]

Loop recursion and dual conformal invariance

- The discovery of dual conformal invariance for scattering amplitudes goes back 13 years [Drummond, Henn, Smirnov, Sokatchev, 2006; Alday, Maldacena, 2007; Drummond, Henn, Korchemsky, Sokatchev, 2007; Brandhuber, Heslop, Travaglini, 2007, 2008]
- Recursion relation for loop integrand was found in 2010 [Caron-Huot, 2010; Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka, 2010]

Why now?

- Form factors are inherently non-planar.
- Definition of the loop integrand \leftrightarrow Region variables
- Presence of triangle integrals

$$
I_{4}=\int \mathrm{d}^{4} x_{0} \frac{1}{x_{01}^{2} x_{02}^{2} x_{03}^{2} x_{04}^{2}} \quad I_{3}=\int \mathrm{d}^{4} x_{0} \frac{1}{x_{01}^{2} x_{02}^{2} x_{03}^{2}}
$$

Inversion: $x_{i} \rightarrow x_{i} / x_{i}^{2} \Rightarrow x_{0 i}^{2} \rightarrow \frac{x_{0 i}^{2}}{x_{0}^{2} x_{i}^{2}}$
Change of variable: $x_{0} \rightarrow x_{0} / x_{0}^{2} \Rightarrow d^{4} x_{0} \rightarrow d^{4} x_{0} / x_{0}^{8}$

Part I

Loop Recursion Relation

Integrand poles

- The main issue with the extension of BCFW recursion relation at loop level is the definition of the integrand.

$$
=\int \mathrm{d}^{4} \ell_{\overline{\ell^{2}\left(\ell+p_{1}\right)^{2}\left(\ell+p_{12}\right)^{2}\left(\ell-p_{4}\right)^{2}}}=\int \mathrm{d}^{4} \tilde{\ell}_{\tilde{\ell^{2}}\left(\tilde{\ell}+p_{2}\right)^{2}\left(\tilde{\ell}+p_{23}\right)^{2}\left(\tilde{\ell}-p_{1}\right)^{2}}
$$

Integrand poles

- The main issue with the extension of BCFW recursion relation at loop level is the definition of the integrand.
- When I do a BCFW shift the pole structure is very different

Integrand poles

- The main issue with the extension of BCFW recursion relation at loop level is the definition of the integrand.
- When I do a BCFW shift the pole structure is very different
- Region variables can solve this problem

$$
p_{i}=x_{i}-x_{i+1}
$$

Integrand poles

- The main issue with the extension of BCFW recursion relation at loop level is the definition of the integrand.
- When I do a BCFW shift the pole structure is very different
- Region variables can solve this problem

$$
p_{i}=x_{i}-x_{i+1}
$$

- The BCFW shift is a shift of x_{1}

$$
\hat{x}_{1}=x_{1}-z \lambda_{n} \tilde{\lambda}_{1}
$$

Non-planarity

- Region variable assignment is natural for planar diagrams.
- For amplitudes they correspond to the vertices of the dual polygon Wilson loop.
- The strong coupling picture suggests that the Wilson loop dual should be periodic.

Non-planarity

- Region variable assignment is natural for planar diagrams.
- For amplitudes they correspond to the vertices of the dual polygon Wilson loop.
- The strong coupling picture suggests that the Wilson loop dual should be periodic.
- Similarities with double trace part of amplitudes. [Ben-Israel, Tumanov, Sever, 2018]

Colour ordering

$$
A_{4}=N \operatorname{Tr}\left\{T^{a_{1}} T^{a_{2}} T^{a_{3}} T^{a_{4}}\right\} \mathcal{A}_{4}+\operatorname{Tr}\left\{T^{a_{1}} T^{a_{2}}\right\} \operatorname{Tr}\left\{T^{a_{3}} T^{a_{4}}\right\} \mathcal{A}_{4}^{\mathrm{dt}}+\text { non-cyclic perms }
$$

Single trace

Double trace

Form factor and cutting [LB, Brandhuber, Panerai, Travaglini]

- The form factor is similar since the gauge invariant operator is a trace on its own.

Form factor and cutting [LB, Brandhuber, Panerai, Travaglini]

- The form factor is similar since the gauge invariant operator is a trace on its own.

- On the punctured disk diagrams are planar

Form factor and cutting [LB, Brandhuber, Panerai, Travaglini]

- The form factor is similar since the gauge invariant operator is a trace on its own.

- On the punctured disk diagrams are planar

- Can I assign region variables on the punctured disk? No, unless I cut it.

Region variable assignment [LB, Brandhuber, Panerai, Travaglini]

- In this picture the operator insertion looks like a branch point.

Region variable assignment [LB, Brandhuber, Panerai, Travaglini]

- In this picture the operator insertion looks like a branch point.

- There is a discontinuity across the cut.

$$
x_{1}^{-}=x_{1}-q
$$

Region variable assignment [LB, Brandhuber, Panerai, Travaglini]

- In this picture the operator insertion looks like a branch point.

- There is a discontinuity across the cut.

$$
x_{1}^{-}=x_{1}-q
$$

- The integrand is (notice $x_{1}-x_{\ell_{2}}=x_{1}^{-}-x_{\ell_{2}}^{-}$)

$$
\int d^{4} x_{\ell_{1}} d^{4} x_{\ell_{2}} \frac{1}{x_{2 \ell_{2}}^{2} x_{2 \ell_{1}}^{2}\left(x_{1 \ell_{1}}^{-}\right)^{2} x_{1 \ell_{2}}^{2} x_{\ell_{2} \ell_{1}}^{2}\left(x_{\ell_{2} \ell_{1}}^{-}\right)^{2}}
$$

Region variable assignment [LB, Brandhuber, Panerai, Travaglini]

- In this picture the operator insertion looks like a branch point.

- There is a discontinuity across the cut.

$$
x_{1}^{-}=x_{1}-q
$$

- The integrand is (notice $x_{1}-x_{\ell_{2}}=x_{1}^{-}-x_{\ell_{2}}^{-}$)

$$
\int d^{4} x_{\ell_{1}} d^{4} x_{\ell_{2}} \frac{1}{x_{2 \ell_{2}}^{2} x_{2 \ell_{1}}^{2}\left(x_{1 \ell_{1}}^{-}\right)^{2} x_{1 \ell_{2}}^{2} x_{\ell_{2} \ell_{1}}^{2}\left(x_{\ell_{2} \ell_{1}}^{-}\right)^{2}}
$$

- Nothing changes if we shift all the variables by q : periodicity.

Region variable assignment [LB, Brandhuber, Panerai, Travaglini]

- We can give a prescription to assign region variables diagram by diagram.

Region variable assignment [LB, Brandhuber, Panerai, Travaglini]

- We can give a prescription to assign region variables diagram by diagram.

- This is like choosing where to start in the periodic configuration.

Definition of the integrand

- Is the integrand well defined now?

Definition of the integrand

- Is the integrand well defined now? Up to the periodic redundancy.

Definition of the integrand

- Is the integrand well defined now? Up to the periodic redundancy.
- We define the one-loop integrand

$$
F_{n, k}^{(1)}=\int \mathrm{d}^{d} x_{0} \mathcal{F}_{n, k}^{(1)}\left(\left\{x_{i}\right\} ; x_{0}\right)
$$

- $\mathcal{F}_{n, k}^{(1)}\left(\left\{x_{i}\right\} ; x_{0}\right)$ is actually a function only of $x_{i j}$ and $x_{0 i}$.
- If all x_{i} are shifted by q, one can compensate by shifting x_{0}.

Definition of the integrand

- Is the integrand well defined now? Up to the periodic redundancy.
- We define the one-loop integrand

$$
F_{n, k}^{(1)}=\int \mathrm{d}^{d} x_{0} \mathcal{F}_{n, k}^{(1)}\left(\left\{x_{i}\right\} ; x_{0}\right)
$$

- $\mathcal{F}_{n, k}^{(1)}\left(\left\{x_{i}\right\} ; x_{0}\right)$ is actually a function only of $x_{i j}$ and $x_{0 i}$.
- If all x_{i} are shifted by q, one can compensate by shifting x_{0}.
- We can define equivalence classes

$$
\mathcal{F}_{n, k}^{(1)}\left(\left\{x_{i}\right\} ; x_{0}\right) \sim \mathcal{F}_{n, k}^{(1)}\left(\left\{x_{i}\right\} ; x_{0}+m q\right) \quad m \in \mathbb{Z}
$$

- Of course they yield the same result after integration.

BCFW for the integrand [LB, Brandhuber, Panerai, Travaglini]

- Define the shifted integrand $\mathcal{F}_{n, k}^{(1)}\left(\left\{\hat{x}_{i}\right\} ; x_{0}\right) \equiv \hat{\mathcal{F}}_{n, k}^{(1)}(z)$
- Use residue theorem

$$
0=\frac{1}{2 \pi \mathrm{i}} \oint \frac{\mathrm{~d} z}{z} \widehat{\mathcal{F}}_{n, k}^{(1)}(z)=\mathcal{F}_{n, k}^{(1)}\left(\left\{x_{i}\right\} ; x_{0}\right)+\sum_{z_{i} \neq 0} \operatorname{Res}_{z=z_{i}} \frac{\widehat{\mathcal{F}}_{n, k}^{(1)}(z)}{z}
$$

BCFW for the integrand [LB, Brandhuber, Panerai, Travaglini]

- Define the shifted integrand $\mathcal{F}_{n, k}^{(1)}\left(\left\{\hat{x}_{i}\right\} ; x_{0}\right) \equiv \widehat{\mathcal{F}}_{n, k}^{(1)}(z)$
- Use residue theorem

$$
0=\frac{1}{2 \pi \mathrm{i}} \oint \frac{\mathrm{~d} z}{z} \widehat{\mathcal{F}}_{n, k}^{(1)}(z)=\mathcal{F}_{n, k}^{(1)}\left(\left\{x_{i}\right\} ; x_{0}\right)+\sum_{z_{i} \neq 0} \operatorname{Res}_{z=z_{i}} \frac{\widehat{\mathcal{F}}_{n, k}^{(1)}(z)}{z}
$$

Two types of poles [Caron-Huot, 2010; Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka, 2010]

$\longrightarrow \quad$ Forward limit

Loop recursion relation

Result

$$
\begin{aligned}
\mathcal{F}_{n, k}^{(I)}= & F_{n, k}^{(0)} \tilde{\mathcal{F}}_{n-1, k}^{(I)}\left(\hat{x}_{1}, x_{3}, \ldots, x_{n}, x_{0}\right) \\
& +\frac{1}{x_{01}^{2}} \int \mathrm{~d}^{4} \eta_{\ell} \mathcal{F}_{n+2, k+1}^{(I-1)}\left(\hat{x}_{1}, \ldots, x_{n}, \hat{x}_{1}^{-}, x_{0}^{-}\right) \\
& +\sum_{\ell_{\mathrm{L}}, i, k_{\mathrm{L}}} \int \mathrm{~d}^{4} \eta_{\ell}\left[\mathcal{F}_{i, k_{\mathrm{L}}}^{\left(l_{\mathrm{L}}\right)}\left(\hat{x}_{1}, \ldots, x_{i}\right) \frac{1}{\left(x_{i 1}^{+}\right)^{2}} \mathcal{A}_{n-i+2, k_{\mathrm{R}}}^{\left(l_{\mathrm{R}}\right)}\left(\hat{x}_{1}, x_{i}, \ldots, x_{n}\right)\right. \\
& \left.+\mathcal{A}_{i, \mathrm{k}_{\mathrm{L}}}^{\left(l_{\mathrm{L}}\right)}\left(\hat{x}_{1}, \ldots, x_{i}\right) \frac{1}{\left(x_{i 1}\right)^{2}} \mathcal{F}_{n-i+2, k_{\mathrm{R}}}^{\left(l_{\mathrm{R}}\right)}\left(\hat{x}_{1}, x_{i}, \ldots, x_{n}\right)\right]
\end{aligned}
$$

Loop recursion relation

Result

$$
\begin{aligned}
\mathcal{F}_{n, k}^{(l)}= & F_{n, k}^{(0)} \tilde{\mathcal{F}}_{n-1, k}^{(l)}\left(\hat{x}_{1}, x_{3}, \ldots, x_{n}, x_{0}\right) \\
& +\frac{1}{x_{01}^{2}} \int \mathrm{~d}^{4} \eta_{\ell} \mathcal{F}_{n+2, k+1}^{(I-1)}\left(\hat{x}_{1}, \ldots, x_{n}, \hat{x}_{1}^{-}, x_{0}^{-}\right) \\
& +\sum_{\iota_{\mathrm{L}}, i, k_{\mathrm{L}}} \int \mathrm{~d}^{4} \eta_{\ell}\left[\mathcal{F}_{i, \mathrm{k}_{\mathrm{L}}}^{\left(l_{\mathrm{L}}\right)}\left(\hat{x}_{1}, \ldots, x_{i}\right) \frac{1}{\left(x_{i 1}^{+}\right)^{2}} \mathcal{A}_{n-i+2, k_{\mathrm{R}}}^{\left(l_{\mathrm{R}}\right)}\left(\hat{x}_{1}, x_{i}, \ldots, x_{n}\right)\right. \\
& \left.+\mathcal{A}_{i, \mathrm{k}_{\mathrm{L}}}^{\left(l_{\mathrm{L}}\right)}\left(\hat{x}_{1}, \ldots, x_{i}\right) \frac{1}{\left(x_{i 1}\right)^{2}} \mathcal{F}_{n-i+2, k_{\mathrm{R}}}^{\left(l_{\mathrm{R}}\right)}\left(\hat{x}_{1}, x_{i}, \ldots, x_{n}\right)\right]
\end{aligned}
$$

Loop recursion relation

Result

$$
\begin{aligned}
\mathcal{F}_{n, k}^{(I)}= & F_{n, k}^{(0)} \tilde{\mathcal{F}}_{n-1, k}^{(I)}\left(\hat{x}_{1}, x_{3}, \ldots, x_{n}, x_{0}\right) \\
& +\frac{1}{x_{01}^{2}} \int \mathrm{~d}^{4} \eta_{\ell} \mathcal{F}_{n+2, k+1}^{(I-1)}\left(\hat{x}_{1}, \ldots, x_{n}, \hat{x}_{1}^{-}, x_{0}^{-}\right) \\
& +\sum_{\ell_{\mathrm{L}}, i, k_{\mathrm{L}}} \int \mathrm{~d}^{4} \eta_{\ell}\left[\mathcal{F}_{i, k_{\mathrm{L}}}^{\left(l_{\mathrm{L}}\right)}\left(\hat{x}_{1}, \ldots, x_{i}\right) \frac{1}{\left(x_{i 1}^{+}\right)^{2}} \mathcal{A}_{n-i+2, k_{\mathrm{R}}}^{\left(l_{\mathrm{R}}\right)}\left(\hat{x}_{1}, x_{i}, \ldots, x_{n}\right)\right. \\
& \left.+\mathcal{A}_{i, k_{\mathrm{L}}}^{\left(l_{\mathrm{L}}\right)}\left(\hat{x}_{1}, \ldots, x_{i}\right) \frac{1}{\left(x_{i 1}\right)^{2}} \mathcal{F}_{n-i+2, k_{\mathrm{R}}}^{\left(l_{\mathrm{R}}\right)}\left(\hat{x}_{1}, x_{i}, \ldots, x_{n}\right)\right]
\end{aligned}
$$

Loop recursion relation

Result

$$
\begin{aligned}
\mathcal{F}_{n, k}^{(I)}= & F_{n, k}^{(0)} \tilde{\mathcal{F}}_{n-1, k}^{(I)}\left(\hat{x}_{1}, x_{3}, \ldots, x_{n}, x_{0}\right) \\
& +\frac{1}{x_{01}^{2}} \int \mathrm{~d}^{4} \eta_{\ell} \mathcal{F}_{n+2, k+1}^{(I-1)}\left(\hat{x}_{1}, \ldots, x_{n}, \hat{x}_{1}^{-}, x_{0}^{-}\right) \\
& +\sum_{l_{\mathrm{L}}, i, k_{\mathrm{L}}} \int \mathrm{~d}^{4} \eta_{\ell}\left[\mathcal{F}_{i, k_{\mathrm{L}}}^{\left(l_{\mathrm{L}}\right)}\left(\hat{x}_{1}, \ldots, x_{i}\right) \frac{1}{\left(x_{i 1}^{+}\right)^{2}} \mathcal{A}_{n-i+2, k_{\mathrm{R}}}^{\left(l_{\mathrm{R}}\right)}\left(\hat{x}_{1}, x_{i}, \ldots, x_{n}\right)\right. \\
& \left.+\mathcal{A}_{i, k_{\mathrm{L}}}^{\left(l_{\mathrm{L}}\right)}\left(\hat{x}_{1}, \ldots, x_{i}\right) \frac{1}{\left(x_{i 1}\right)^{2}} \mathcal{F}_{n-i+2, k_{\mathrm{R}}}^{\left(l_{\mathrm{R}}\right)}\left(\hat{x}_{1}, x_{i}, \ldots, x_{n}\right)\right]
\end{aligned}
$$

A peculiarity

Subtleties and features

- The forward limit in general is singular, but for supersymmetric theories the singularity cancels in the sum over states.
- As for amplitudes, the result contains spurious poles.
- It is very important, as a matter of principles, to know that the integrand can be determined recursively.

Subtleties and features

- The forward limit in general is singular, but for supersymmetric theories the singularity cancels in the sum over states.
- As for amplitudes, the result contains spurious poles.
- It is very important, as a matter of principles, to know that the integrand can be determined recursively.
- We checked for $n=2,3$ at one loop that the formula works.
- We also derived an all-line recursion formula.

Subtleties and features

- The forward limit in general is singular, but for supersymmetric theories the singularity cancels in the sum over states.
- As for amplitudes, the result contains spurious poles.
- It is very important, as a matter of principles, to know that the integrand can be determined recursively.
- We checked for $n=2,3$ at one loop that the formula works.
- We also derived an all-line recursion formula.
- It gives the same result of generalized unitarity after integration for two reasons:
(1) As for amplitudes, it agrees with unitarity up to parity odd terms that integrate to zero. [Cachazo, 2008; Bourjaily, Caron-Huot, Trnka, 2013]
(2) Furthermore, for form factors, agreement is obtained up to shifts $x_{0} \rightarrow x_{0}+n q$.

Part II

Dual conformal symmetry

Periodic momentum twistors

- Supermomentum variables are periodic

$$
x_{i}^{[m]}=x_{i}+m q \quad\left(\theta_{i}^{[m]}\right)^{A \alpha}=\left(\theta_{i}\right)^{A \alpha}+m q^{A \alpha}
$$

- One can introduce a periodic configuration for supertwistors

$$
\mathcal{Z}_{i}^{[m] M}=\binom{Z_{i}^{[m \mid \hat{A}}}{\chi_{i}^{[m] A}}
$$

Dual conformal invariance at tree level

- Usual superconformal invariant

$$
\begin{gathered}
{[a, b, c, d, e]=\frac{\delta^{(4)}\left(\langle a, b, c, d\rangle \chi_{e}+\text { cyclic }\right)}{\langle a, b, c, d\rangle\langle b, c, d, e\rangle\langle c, d, e, a\rangle\langle d, e, a, b\rangle\langle e, a, b, c\rangle}} \\
\langle i, j, k, l\rangle=\epsilon_{\hat{A} \hat{B} \hat{C} \hat{D}} Z_{i}^{\hat{A}} Z_{j}^{\hat{B}} Z_{k}^{\hat{c}} Z_{l}^{\hat{D}}
\end{gathered}
$$

Dual conformal invariance at tree level

- Usual superconformal invariant

$$
\begin{gathered}
{[a, b, c, d, e]=\frac{\delta^{(4)}\left(\langle a, b, c, d\rangle \chi_{e}+\text { cyclic }\right)}{\langle a, b, c, d\rangle\langle b, c, d, e\rangle\langle c, d, e, a\rangle\langle d, e, a, b\rangle\langle e, a, b, c\rangle}} \\
\langle i, j, k, l\rangle=\epsilon_{\hat{A} \hat{B} \hat{C} \hat{D}} Z_{i}^{\hat{A}} Z_{j}^{\hat{B}} Z_{k}^{\hat{c}} z_{l}^{\hat{D}}
\end{gathered}
$$

- Using BCFW one can express all tree level ratios $\tilde{F}_{n, k}^{(0)}$ as combinations of

- For example, for the NMHV four-point four factor

$$
\tilde{F}_{4,1}^{(0)}=R_{133}^{\prime}+R_{134}^{\prime}+R_{144}^{\prime}+R_{131}^{\prime \prime}
$$

Dual conformal invariance at tree level [Bork, 2014]

- General configurations are dual superconformal invariant

Dual conformal invariance at tree level [Bork, 2014]

- General configurations are dual superconformal invariant

- There is a special case

Dual conformal invariance at one loop

- At one-loop the dual conformal anomaly reads [Drummond, Henn, Korchemsky, Sokatchev, 2007]

$$
\mathrm{K}^{\mu} A_{n, k}^{(1)}=-4 A_{n, k}^{(0)} \sum_{i=1}^{n} \frac{x_{i+1}^{\mu}\left(-x_{i i+2}^{2}\right)^{-\epsilon}}{\epsilon}
$$

Dual conformal invariance at one loop

- At one-loop the dual conformal anomaly reads [Drummond, Henn, Korchemsky, Sokatchev, 2007]

$$
\mathrm{K}^{\mu} F_{n, k}^{(1)}=-4 F_{n, k}^{(0)} \sum_{i=1}^{n} \frac{x_{i+1}^{\mu}\left(-x_{i i+2}^{2}\right)^{-\epsilon}}{\epsilon}
$$

- Relation with the IR divergence

$$
\left.F_{n, k}^{(1)}\right|_{\mathrm{IR}}=-F_{n, k}^{(0)} \sum_{i=1}^{n} \frac{\left(-x_{i i+2}^{2}\right)^{-\epsilon}}{\epsilon^{2}} \quad \Rightarrow \quad \mathrm{~K}^{\mu} F_{n, k}^{(1)}=\left.4 \epsilon x_{i+1}^{\mu} F_{n, k}^{(1)}\right|_{\mathrm{IR}}
$$

Dual conformal invariance at one loop

- At one-loop the dual conformal anomaly reads [Drummond, Henn, Korchemsky, Sokatchev, 2007]

$$
\mathrm{K}^{\mu} F_{n, k}^{(1)}=-4 F_{n, k}^{(0)} \sum_{i=1}^{n} \frac{x_{i+1}^{\mu}\left(-x_{i i+2}^{2}\right)^{-\epsilon}}{\epsilon}
$$

- Relation with the IR divergence

$$
\left.F_{n, k}^{(1)}\right|_{\mathrm{IR}}=-F_{n, k}^{(0)} \sum_{i=1}^{n} \frac{\left(-x_{i i+2}^{2}\right)^{-\epsilon}}{\epsilon^{2}} \quad \Rightarrow \quad \mathrm{~K}^{\mu} F_{n, k}^{(1)}=\left.4 \epsilon x_{i+1}^{\mu} F_{n, k}^{(1)}\right|_{\mathrm{IR}}
$$

- This can be seen by looking at the only IR-divergent cut [Brandhuber, Heslop, Travaglini, 2009]

- The IR-singular part of this cut is given entirely by the forward configuration

$$
\ell_{1}=-p_{i} \quad \ell_{2}=-p_{i+1} \quad x_{0}=x_{i+1}
$$

NHMV example

- Let us focus on the finite part

$$
\left.\mathrm{K}^{\mu} F_{n, k}^{(1)}\right|_{\mathrm{fin}}=-2 F_{n, k}^{(0)} \sum_{i=1}^{n} p_{i}^{\mu} \log \left(\frac{x_{i i+2}^{2}}{x_{i-1 i+1}^{2}}\right)
$$

Result for NMHV at 4 points

NHMV example

- Let us focus on the finite part

$$
\left.\mathrm{K}^{\mu} F_{n, k}^{(1)}\right|_{\mathrm{fin}}=-2 F_{n, k}^{(0)} \sum_{i=1}^{n} p_{i}^{\mu} \log \left(\frac{x_{i i+2}^{2}}{x_{i-1 i+1}^{2}}\right)
$$

Result for NMHV at 4 points

$$
\begin{aligned}
& \tilde{F}_{4,1}^{(1)}=\frac{c^{2 \mathrm{~m}}}{2}\left({ }_{2}^{2}\right. \\
& +c^{3 m}=\int_{4}^{-2}+\text { cyclic }
\end{aligned}
$$

NHMV example

- Let us focus on the finite part

$$
\left.\mathrm{K}^{\mu} F_{n, k}^{(1)}\right|_{\mathrm{fin}}=-2 F_{n, k}^{(0)} \sum_{i=1}^{n} p_{i}^{\mu} \log \left(\frac{x_{i i+2}^{2}}{x_{i-1 i+1}^{2}}\right)
$$

Finite part

$$
\begin{aligned}
& +c^{3 m}=\int_{4}^{-2}+\text { cyclic } .
\end{aligned}
$$

NHMV example

- Let us focus on the finite part

$$
\left.\mathrm{K}^{\mu} F_{n, k}^{(1)}\right|_{\mathrm{fin}}=-2 F_{n, k}^{(0)} \sum_{i=1}^{n} p_{i}^{\mu} \log \left(\frac{x_{i i+2}^{2}}{x_{i-1 i+1}^{2}}\right)
$$

Dual conformal variations

$$
\mathrm{K}^{\mu} c^{2 m}=0 \quad \sum_{\text {cyclic }} \frac{c^{2 m}}{2} \mathrm{~K}^{\mu}(\text { Boxes })=-2 F_{4,1}^{(0)} \sum_{i=1}^{4} p_{i}^{\mu} \log \left(\frac{x_{i i+2}^{2}}{x_{i-1 i+1}^{2}}\right)
$$

NHMV example

- Let us focus on the finite part

$$
\left.\mathrm{K}^{\mu} F_{n, k}^{(1)}\right|_{\mathrm{fin}}=-2 F_{n, k}^{(0)} \sum_{i=1}^{n} p_{i}^{\mu} \log \left(\frac{x_{i i+2}^{2}}{x_{i-1 i+1}^{2}}\right)
$$

Dual conformal variations

Conclusion and outlook

Conclusion

- We provided a natural prescription to assign region variables in the perturbative computation of form factors.
- This allowed to define the loop integrand and to derive a loop recursion relation.
- We also found that the dual variables representation provided by our assignment exhibits dual conformal invariance.
- We explicitly checked dual conformal symmetry for the MHV and NMHV one-loop amplitude, finding that triangle integrals do not contribute to the anomaly.

Conclusion and outlook

Conclusion

- We provided a natural prescription to assign region variables in the perturbative computation of form factors.
- This allowed to define the loop integrand and to derive a loop recursion relation.
- We also found that the dual variables representation provided by our assignment exhibits dual conformal invariance.
- We explicitly checked dual conformal symmetry for the MHV and NMHV one-loop amplitude, finding that triangle integrals do not contribute to the anomaly.

Outlook

- It would be desirable to have a more direct recipe to go from momenta to dual variables
- The integrands provided by generalized unitarity or loop recursion are not ideal. One would like a local integrand representation like that provided by prescriptive unitarity. [Bourjaily, Herrmann, Trnka, 2017]
- Wilson loop dual and finite coupling.

Examples

$$
\left.\mathrm{K}^{\mu} F_{n, k}^{(1)}\right|_{\mathrm{fin}}=-2 F_{n, k}^{(0)} \sum_{i=1}^{n} p_{i}^{\mu} \log \left(\frac{x_{i i+2}^{2}}{x_{i-1 i+1}^{2}}\right)
$$

MHV

$$
\begin{aligned}
& F_{n, 0}^{(1)}=F_{n, 0}^{(0)}\left(-\sum_{i=1}^{n} \frac{\left(-x_{i+2}^{2}\right)^{-\epsilon}}{\epsilon^{2}}+\sum_{r, a}\right.
\end{aligned}
$$

Triangles

$$
c^{3 m}=\mathcal{R}_{r, s}\left(\ell_{2}\right) \frac{\sqrt{u v}}{\Delta}
$$

$$
\begin{aligned}
\mathcal{R}_{r, s}\left(\ell_{2}\right)= & {\left[\ell_{2}, r, r-1, r^{-},(r-1)^{-}\right] \frac{\left\langle\ell_{2}, r, r-1, r^{-}\right\rangle\left\langle\ell_{2}, r^{-},(r-1)^{-}, r-1\right\rangle}{\left\langle\ell_{2}, r, r-1, s-1\right\rangle\left\langle\ell_{2}, r^{-},(r-1)^{-}, s\right\rangle} } \\
& \times \frac{\langle s-1, s, r-1, r\rangle^{\frac{1}{2}}\left\langle s-1, s,(r-1)^{-}, r^{-}\right\rangle^{\frac{1}{2}}}{\left\langle r-1, r,(r-1)^{-}, r^{-}\right\rangle} . \\
& \mathcal{Z}_{\ell_{2}}^{M}=\binom{Z_{\ell_{2}}^{\hat{A}}}{\theta_{b}^{A \alpha} \lambda_{\ell_{2} \alpha}}, \quad Z_{\ell_{2}}^{\hat{A}}=\binom{\lambda_{\ell_{2}}^{\alpha}}{x_{b}^{\dot{\alpha} \alpha} \lambda_{\ell_{2} \alpha}}
\end{aligned}
$$

