First Result for a Full Two-Loop Five-Gluon Amplitude

Johannes M. Henn

Max-Planck Institute for Physics, Munich

Based on arXiv:1812.1160 (accepted for publication in PRL) and arXiv:1905.03733

> Amplitudes, July 1-5, 2019 Trinity College Dublin

Max-Planck-Institut für Physik

European Research Council

Established by the European Commission

The pentagon team

Simon Badger

Dmitry Chicherin

Thomas Gehrmann

Gudrun Heinrich

Simone Zoia

Johannes Henn

Tiziano Peraro

Pascal Wasser

For Many QCD Processes, Next-to-Leading Order is Insufficient

E.g. strong coupling from 3-jet/2-jet ratio:

Large theoretical uncertainty!

Next-to-Next-to-Leading Order theory predictions needed.

Multi-jet processes at the LHC are important for phenomenology

- Determination of strong coupling constant α_s
- tests of Standard Model
- search for new physics

Major theory bottleneck (?): virtual two-loop amplitudes

Are virtual corrections the bottleneck?

Dramatic recent progress

- All QCD amplitudes known analytically in the *planar* limit [Gehrmann, Henn, Lo Presti '15; Dunbar, Perkins '16; Badger, Brønnum-Hansen, Hartanto, Peraro '18; Abreu, Dormans, Febres Cordero, Ita, Page '18; Abreu, Dormans,
- Febres Cordero, Ita, Page, Sotnikov '19] [— Ben Page's talk]
- Symbols of N=4 sYM and N=8 supergravity amplitudes [Abreu, Dixon, Herrmann, Page, Zeng '18 '19] [Chicherin, Gehrmann, Henn, Wasser, Zhang, Zoia '18 '19]

• Full-color five-gluon all-plus helicity amplitude [— this talk]

Workflow scattering amplitudes

Loop integrand for all-plus amplitude

[Badger, Mogull, Ochirov, O'Connel '15]

Naively numerators with up to degree five/six

Color decomposition

• The amplitudes are vectors in color space

 $A_{\lambda}^{(2,1)}$ truly new piece (due to color relations)

• Basis of single and double traces

$$T_1 = \text{Tr}(12345) - \text{Tr}(15432)$$
$$T_{13} = \text{Tr}(12) \left[\text{Tr}(345) - \text{Tr}(543)\right]$$

(and permutations thereof)

Finite field methods significantly improve integration-by-parts (IBP) reduction algorithms

• Finite field and rational reconstruction

[Schabinger, von Manteuffel, '15] [Peraro, '16, '19] [Maierhöfer, Usovitch, '18] [Smirnov, Chukharev, '19]

- faster IBP's
- better scaling for multi scale problems
- We further optimise by reconstructing only the physical answer

 $14 \pm 0.0018 \pm 0.0050$

All master integrals known for massless two-loop five-particle scattering

[Gehrmann, Henn, Lo Presti '15, '18] [Papadopoulos, Tommasini, Wever '15]

[Böhm, Georgoudis, Larsen, Schönemann, Zhang, '18] [Abreu, Page, Zeng, '18]

[Chicherin, Gehrmann, Henn, Lo Presti, Mitev, Wasser, '18]

[Abreu, Dixon, Herrmann, Page, Zeng, '18]

[Chicherin, Gehrmann, Henn, Wasser, Zhang, Zoia, '18]

→ Result described by pentagon functions

Algorithmic construction of canonical basis

• Main idea: analyse leading singularities

[Arkani-Hamed, Bourjaily, Cachazo, Trnka '10] [Henn '13]

Closely related to dlog integrands

[Arkani-Hamed, Bourjaily, Cachazo, Trnka '14] [Bern, Herrmann, Litsey, Stankowicz, Trnka '14]

 Implementation as algorithm to find all D=4 dlog integrands

Subtlety: integrands that vanish in D=4 can be important

 D-dimensional leading singularity analysis based on Baikov representation

[Chicherin, Gehrmann, Henn, Wasser, Zhang, Zoia '18]

Pentagon functions

- Proposed in [Chicherin, Henn, Mitev '17]
- Confirmed in [Abreu, Dixon, Herrmann, Page, Zeng, '18] [Chicherin, Gehrmann, Henn, Lo Presti, Mitev, Wasser, '18]

Iterated integrals along path $~\gamma$

 $\int_{\gamma} d\log W_{i_1}\cdots d\log W_{i_n}$

31 integration kernels W related to branch cuts

 Planar pentagon functions: fast numerical implementations [Gehrmann, Henn, Lo Presti, '18]

[https://pentagonfunctions.hepforge.org/]

Kinematics of five-particle scattering

Integration kernels encode all possible physical and spurious singularities of amplitudes

Integration kernels $d \log W_i$ $i = 1 \dots 31$

Letter	s notation	momentum notation	cylic
W_1	s_{12}	$2p_1 \cdot p_2$	+ (4)
W_6	$s_{34} + s_{45}$	$2p_4 \cdot (p_3 + p_5)$	+ (4)
W_{11}	$s_{12} - s_{45}$	$2p_3 \cdot (p_4 + p_5)$	+ (4)
W_{16}	$s_{45} - s_{12} - s_{23}$	$2p_1 \cdot p_3$	+ (4)
W_{21}	$s_{34} + s_{45} - s_{12} - s_{23}$	$2p_3 \cdot (p_1 + p_4)$	+ (4)
W_{26}	$\frac{s_{12}s_{23}-s_{23}s_{34}+s_{34}s_{45}-s_{12}s_{15}-s_{45}s_{15}-\sqrt{\Delta}}{s_{12}s_{23}-s_{23}s_{34}+s_{34}s_{45}-s_{12}s_{15}-s_{45}s_{15}+\sqrt{\Delta}}$	$\frac{\text{tr}[(1-\gamma_5)\not\!\!\!\!/_4\not\!\!\!/_5\not\!\!\!/_5\not\!\!\!/_1\not\!\!\!/_2]}{\text{tr}[(1+\gamma_5)\not\!\!\!/_4\not\!\!\!/_5\not\!\!\!/_5\not\!\!\!/_5\not\!\!\!/_1\not\!\!\!/_2]}$	+ (4)
W_{31}	$\sqrt{\Delta}$	$\mathrm{tr}[\gamma_5 \not\!\!p_1 \not\!\!p_2 \not\!\!p_3 \not\!\!p_4]$	

 Table 2. Interpretation of pentagon alphabet in terms of particle momenta.

 adapted from [Gehrmann, Henn, Lo Presti, '18]

Integration kernels encode all possible physical and spurious singularities of amplitudes

Integration kernels $d \log W_i$ $i = 1 \dots 31$

 Table 2. Interpretation of pentagon alphabet in terms of particle momenta.

 adapted from [Gehrmann, Henn, Lo Presti, '18]

Physical s₁₂ channel

Positive s-channel energies, real particle momenta: $\Delta \leq 0$ Sketch for kinematics: $s_{i,i+1} = (3, -1 + x, 1, 1, -1 + y)$

Pentagon functions in terms of familiar functions (to mathematicians and particle theorists)

- Integration kernels $d \log W_i$ $i = 1 \dots 31$
- At NNLO, up to four iterations (weight) needed:

 $[W_a, W_b, W_c, W_d]_{X_0} = \int d \log W_a \int d \log W_b \int d \log W_c \int d \log W_d$ Boundary point: $X_0 = (3, -1, 1, 1, -1)$ Up to weight 2, logarithms and dilogarithms:

• Weight I: $[W_1]_{X_0} = \log(s_{12}/3)$ $[W_2]_{X_0} = \log(-s_{23})$

• Weight 2:
$$[W_5/W_2, W_{12}/W_2]_{X_0} = -\text{Li}_2\left(1 - \frac{s_{15}}{s_{23}}\right)$$

• In general: Goncharov polylogarithms

Numerical evaluation in physical region

- Expressed in terms of pentagon functions
- Boundary values from physical consistency conditions
- Result in terms of Goncharov polylogarithms
- Numerical evaluation: GINAC
- Checks using SecDec

• We define an infrared finite hard function

$$\mathcal{H} = \lim_{\varepsilon \to 0} \mathcal{A}^f$$

- Truly new piece of information
- Much simpler than finite part of amplitude

Simple final result for two-loop hard function

Finite part of one-mass box function:

$$\int_{2}^{4} \int_{1}^{4} \sum_{1}^{5} \operatorname{Li}_{2}\left(1 - \frac{s_{12}}{s_{45}}\right) + \operatorname{Li}_{2}\left(1 - \frac{s_{23}}{s_{45}}\right) + \log^{2}\left(\frac{s_{12}}{s_{23}}\right) + \frac{\pi^{2}}{6}$$

Gluon spin dimension: $\kappa = \frac{g_{\mu}{}^{\mu} - 2}{6}$

- Formula is valid in all physical regions $s_{ij} \rightarrow s_{ij} + i0$
- Correct factorisation in collinear limit

Coefficients of box functions are conformally invariant!

$$k_{\alpha\dot{\alpha}} \frac{[45]^2}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} = 0$$

Generator of conformal boosts $k_{\alpha\dot{\alpha}} = \sum_{i=1}^5 \frac{\partial^2}{\partial \lambda_i^{\alpha} \partial \tilde{\lambda}_i^{\dot{\alpha}}}$
[Witten '03]

 Box functions satisfy anomalous conformal Ward identities

[Chicherin, Sokatchev '17; Chicherin, Henn, Sokatchev '18]

New, manifestly conformal form of one-loop amplitude

$$A_{1}^{(1,0)} = \frac{\kappa}{2} \frac{s_{12}s_{23} + s_{23}s_{34} + s_{34}s_{45} + s_{45}s_{51} + s_{51}s_{12} + \operatorname{tr}(\gamma_{5} p_{4}p_{5}p_{1}p_{2})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle} = \frac{\kappa}{5} \sum_{\text{cyclic}} \left[\frac{[24]^{2}}{\langle 13 \rangle \langle 35 \rangle \langle 51 \rangle} + 2 \frac{[23]^{2}}{\langle 14 \rangle \langle 45 \rangle \langle 51 \rangle} \right]$$

One-loop formula is conformally invariant:

$$k_{\alpha\dot{\alpha}} = \sum_{I=1}^{5} \frac{\partial^2}{\partial\lambda_i^{\alpha}\partial\tilde{\lambda}_i^{\dot{\alpha}}} \qquad \qquad k_{\alpha\dot{\alpha}} A_1^{1,0} = 0$$

Summary

• Very first full five-gluon two-amplitude Including non-planar part and at function level

• Result fits on only two lines, and has intriguing conformal symmetry properties!

• All master integrals for generic five-particle QCD amplitudes are known in the physical region Full analytical and numerical control

MIAPP program on Scattering Amplitudes July 13 - August 7, 2020

www.munich-iapp.de

Program on LHC physics: August 10 - Sept 4, 2020