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   For more than 30 years a small (and crazy?) group of 
theorists has taken Trans-Planckian-Energy (TPE) collisions 
of strings (and later of branes) as the thought experiment 
of choice for addressing some fundamental issues about 
the merging of General Relativity and Quantum Mechanics. 
 The original aim was (and to a large extent still is) to 
understand, within a consistent theory of quantum gravity, 
whether and how information is preserved in a process 
that leads, classically, to black hole formation and, semi-
classically, to an apparent loss of information via Hawking’s 
evaporation  process.

Introduction



   A point to be emphasized -particularly at this 
conference- is that we did not start from assuming a GR 
metric and by then quantizing fields (or strings) around it. 
We just computed (QFT or QST)  amplitudes in flat space-
time and tried to see phenomena usually attributed to a 
classical geometry emerge while keeping full control over 
the quantum calculation and its unitary nature. 
 In the back of our (or at least my) mind was the belief 
that the apparent loss of quantum information by black 
hole creation and evaporation could be due to the 
artificial/unphysical separation of the system into a 
classical geometry and quantum matter. 
What if one sticked to the quantum all the way through?



The game started in 1987 with parallel work on TPE 
string-string collisions by: 
Amati, Ciafaloni & GV (ACV) and Muzinich & Soldate 
in the large-b eikonal regime and by 
Gross, Mende (& later Ooguri) 
in the fixed-angle regime (the two have a small overlap 
where they can be successfully compared) 
There was parallel related work by ’t Hooft in the QFT 
limit which does make appeal from the start to a 
classical background metric. 
Much later (> 2010) the HE scattering of a closed string 
off a stack of D- branes was also considered: 
D’Appollonio, Di Vecchia, R. Russo & GV +…



In the first part of this talk I will give a quick review 
of the main results and challenges obtained along that 
ambitious programme. 
As we shall see, in spite of much progress, we were not 
able to fully answer the original question, the one about 
quantum coherence/unitarity in the collapse regime. 
Then, around 2014, some of us turned to the calculation 
of gravitational radiation from TPE collisions.  
This more recent activity will be the subject of the 
second part of this talk. 



I. Results & challenges on 
the scattering problem:  

a short summary 

(for a longer summary see my slides at the focus week of this 
year’s GGI workshop: “string theory from a world-sheet 

perspective”)



Ia. String-String collisions
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•  3 relevant length scales (neglecting lP @ gs << 1) 
•  Playing w/s and gs we can make RD/ls arbitrary 
•  Several regimes emerge. Roughly just three: 



lP
ls

⇠ gs ⌧ 1 R~(GE)1/(D-3)

b

ls 

ls 

lP

2 = string gravity

3 = strong gravity

1 = weak gravity

lP

unitarity?

E = MP

grav.al deflection, time delay, 
tidal excitations,  
grav.al bremsstrahlung

critical points
screening q. gravity, 
 GUP, 
pre-collapse 



• Restoring elastic unitarity via eikonal 
resummation (trees violate p.w.u.) 

• Gravitational deflection & time delay:an 
emerging Aichelburg-Sexl (AS) metric 

• t-channel “fractionation” and hard scattering 
(large Q) from large-distance (b) physics 

• Tidal excitation of colliding strings, inelastic 
unitarity, comparison with string in AS metric 
(not yet done beyond leading term in R/b = 
challenge # 1) 

•Gravitational bremsstrahlung (see Part II) 

Results in the weak gravity regime
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 String softening of quantum gravity @ small b: 
solving a causality problem (Edelstein et al) 

• Maximal classical deflection and comparison/
agreement w/ Gross-Mende-Ooguri 

• Generalized Uncertainty Principle 

 s-channel “fractionation”and precocious black-
hole-like behavior (<Efinal> ~ MP2/<Einitial>) 
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Results in the string gravity regime
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Results in the strong gravity regime 
(D=4, point-particle limit. D > 4 easier?)
• Identifying (semi) classical contributions as 
effective trees. No classical correction to 
deflection at O(R2/b2); correction estimated 
(correctly?) at O(R3/b3). Under new scrutiny.. 

• An effective 2D field theory to resum trees  

• Emergence of critical parameters (for real-
regular solutions) in good agreement with collapse 
criteria based on constructing a CTS. 

• Unitarity beyond cr. surf? Apparently complex-
regular solns. dont work… Challenge # 2! 



Another basic process in which a pure initial state evolves into 
a complicated (yet presumably still pure) state. 
An easier problem since the string acts as a probe of a 
geometry determined by the heavy brane system.  

Once more: we are not assuming a metric: calculations 
performed in flat spacetime (D-branes introduced via 
boundary-state formalism)  

Ib: String-brane collisions
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• Deflection angle, time delay, agreement with 
curved space-time calculations even at 
subleading order. 

• Unitarity preserving tidal excitation, 
description of the tidally-excited microstates 

• Short-distance corrections & resolution of 
potential causality problems 

•Absorption via closed-open transition, 
microscopic description of single open D-string. 

• Dissipation into many open strings, 
thermalization? Unitarity? (Challenge # 3) 

Results



II: Gravitational radiation from ultra-
relativistic collisions



θs

θ
φ

q

1
p’

p’
2

p
2

p
1

q

b

−J
z

y

x

The process at hand



1. A classical GR approach  
(A. Gruzinov & GV, 1409.4555) 

2. A quantum eikonal approach  
(CC&Coradeschi & GV, 1512.00281, Ciafaloni, 
Colferai & GV, 1812.08137) 

3. A soft-theorem approach 
(Laddha & Sen, 1804.09193; Sahoo & Sen 

1808.03288, Addazi, Bianchi & GV, 1901.10986)  

Three methods

Comments: 
a. #2 goes over to #1 in the classical limit  
b. They agree with #3 in the overlap of their 

respective domains of validity 



Domains of validity

• The CGR and quantum eikonal approaches are 
limited to small-angle scattering but cover a wide 
range of GW frequencies. 
• The soft-theorem approach is not limited to 
small deflection angles but is only valid in a much 
smaller frequency region. 



A classical GR approach 

Based on Huygens superposition principle.  

For gravity this includes in an essential way 
the gravitational time delay in AS’s shock-
wave metric.
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A quantum eikonal approach 



One should also take into account the (finite) 
difference between the (infinite) Coulomb phase of 
the final 3-particle state and that of an elastic 2-
particle state.  

When this is done, the classical result of G+V is 
exactly recovered for hω/E -> 0!

Emission from external and internal legs throughout 
the whole ladder (with its suitable phase) has to be 
taken into account for not so soft gravitons.



Frequency + angular spectrum (s = 4E2, R= 4GE)  

Re ζ2 and Im ζ2  correspond to usual (+,x) GW polarizations, 
ζ2, ζ*2 to the two circular ones (not each other’s cc!). 
Subtracting the deflected shock wave is crucial!  
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Analytic results: a Hawking knee*  
& an unexpected bump  

*yet another precocious BH behavior?



For b-1 < ω < R-1  the GW-spectrum is almost flat in ω
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 Above ω = R-1 drops, takes a “scale-invariant” form: 

 

This gives a log ω* in the  “efficiency” for a cutoff at ω*

Below ω = b-1 it “freezes” reproducing the zero-f-limit

Hawking knee!



For ω > ω* G+V argued for a G-1ω-2  spectrum which 
(extrapolated to θs ~1) turns out to be that of a time-
integrated BH evaporation!

At ω ~ R-1 θs
-2  the above spectrum becomes O(Gs θs4) i.e. 

of the same order as terms we neglected. 
Also, if continued above R-1 θs

-2, the so-called “Dyson 
bound” (dE/dt < 1/G) would be violated. Using ω* ~ R-1 θs-2  
we find (to leading-log accuracy):
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Challenge #4: ω* & spectrum above 



suggest naive (monotonic) interpolation around 
ωb ~ 1, e.g.  
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This appears not to be the case… 

The fine spectrum below 1/b 



A careful study of the region ωR << 1, but with ωb 

generic, shows that: 

At ωb < (<<) 1 there are corrections of order 
(ωb)log(ωb), (ωb)2log2(ωb) (higher logs suppressed).  

First noticed by Sen et al. in the context of soft 
thrms in D=4. Here they come from the mismatch 
between the two- and three-body Coulomb phase. 

These logarithmically enhanced sub and sub-sub 
leading corrections disappear at ωb > 1 so that the 
previously found log(1/ωR) behavior (for ωb > 1 > ωR), 
as well as the Hawking knee, remain valid. 



The ωb (both w/ and w/out log(ωb)) correction only 
appears for circularly polarized (definite helicity) GWs 
but disappear either for the (more standard) + and x 
polarizations, or after summing over them*), or, finally, 
after integration over the azimuthal angle.  

The (ωb)log(ωb) terms are in complete agreement 
with what had been previously found by A. Sen and 
collaborators using soft-graviton theorems to sub-
leading order (see below). 

************************ 
*)Indeed we found: A(λ=-2,ω) = A*(λ=+2,-ω) implying 
that the O(ω) correction to unpol.ed flux vanishes. 



The leading (ωb)2log2(ωb) correction to the total flux 
is positive and produces a bump at ωb ~ 0.5.  

Could not be compared to Sen et al. who only 
considered ωb log(ωb) corrections. 

Now confirmed by Sahoo (private comm. by Sen) but 
there are still questions about O(ωb). 

 Can be compared successfully with soft-graviton 
approach if Sen et al.’s recipe is adopted at O(ω2), see 
below. 



Numerical results 
(skip 8 slides?) 

Ciafaloni, Colferai, Coradeschi & GV-1512.00281 
Ciafaloni, Colferai & GV-1812.08137



(CCCV 1512.00281)
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θs = 10-3

M. Ciafaloni, D. Colferai & GV,  1505.06619

ph. sp.
suppr. pT

cutoff



ωR = 0.125ωR = 10-3

M. Ciafaloni, D. Colferai, F. Coraldeschi & GV,  1512.00281

Angular (polar and azimuthal) distribution



ωR = 8.0ωR = 1.0

Angular (polar and azimuthal) distribution

Selected for PRD’s picture gallery…



Beyond the ZFL via soft theorems 
(Laddha & Sen, 1804.09193;  
Sahoo & Sen, 1808.03288,  

Addazi, Bianchi & GV, 1901.10986) 

A soft-theorem approach 



Low-energy (soft) theorems for photons and 
gravitons (Low, Weinberg, … sixties) had a revival 
recently (Strominger, Cachazo, Bern, Di Vecchia, 
Bianchi…). In the case of a soft graviton of 
momentum q we have (for spinless hard particles)

NB: sub and sub-sub leading terms may need 
corrections at loop level & from IR sing.s @ D=4.



Recovering the ZFL (m=0 case)

sum over polarizations gives the integrand

Keeping just the leading term in the x-section:



Result does not depend on µ and is free of mass 
(collinear) divergences. For 2->2 scattering:

At small deflection angle (|t| << s):
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Next-to-Leading (O(ω)) correction

summing over polarizations

For given i,j the relevant integral

has collinear divergences. These are nicely avoided 
through a little trick (additional terms vanish after sum)



We also add a δ(qP + 2Eω0) (w/ P the c.o.m. momentum) 
to fix the c.o.m. ω = ω0 in a covariant way. Quantity in 
sq. brackets orthogonal to pi, pj. Then we get

(note absence of singularities when latter vanishes)

To be sandwiched (divided) between (by) Sif+Sfi



Vanishing of O(ω) correction for 2->2

Terms with i = j do not contribute.Terms with (i, j = 1, 2 
and 3,4) vanish because projector = 0. For (i,j = 1,3) the 
derivatives only contribute when acting on (p1p3): this 
produces a p1 or p3 which get killed by the contraction. 
The result (recall that we summed over pol.s!) agrees 
with those obtained in the eikonal approach and also 
with Sen et al. for the log-enhanced term. 



The sub-sub leading (O(ω2)) correction
The calculation is much more involved, but the final 
result takes a (relatively) simple, elegant form

= ~�1 dE
GW
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The above combinations of derivatives are 
unambiguous. They act on either A(s,t) or on A’(s,u) or 
on A’’(t,u)  yielding the same result for the same 
physical amplitude.

Specializing to a 2->2 process 



Example I  
A tree-level 2->2 amplitude, e.g. single graviton 
exchange in a+b->a+b (w/ a ≠ b) 

A(s, t) = �su

t
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t
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Corrections to ZFL look quantum and O(h2 ω2/Q2)  
But if we use Q = h/b they become O( ω2b2) (i.e. 
classical?) 
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This result has been checked via a long, explicit 
calculation in N=8 SUGRA.



Example II : Resummed eikonal a la ACV.
Because of phase O(action/h) derivatives act, to leading 
order, on the exponent (Cf. WKB). The powers of h 
cancel and we get a classical contribution. 
Unfortunately, the infinite Coulomb phase does NOT 
drop out.

The reason is quite clear: the derivative operators in Ji 

feel the change of the Coulomb phase due to the change 
of the hard momenta. Such a change is itself  IR 
divergent. However, also the final soft graviton 
contributes an IR div. Coulomb phase which is exactly as 
needed for the cancellation (Cf. CCV18).  



The standard soft-graviton recipe misses it and should 
be amended. 

If we follow Sen et al’s recipe for dealing with the 
Coulomb IR logs we can match the result with the one 
obtained in CCV-18 (for the unpolarized, angle-
integrated flux).  

We get, like CCV18, a positive correction of order 
(ωb)2log2(ωb) (but, unlike in CCV18, with a precise 
coefficient in front) confirming the already mentioned 
bump in the spectrum around ωb = 0.5.



Complementarity w/ other calculations
• Grav.al bremss. from a gravital collision occurs @ 
O(G3); same as a recent calculation of the 3PM 
conservative potential/deflection angle (Bern et al. 
1901.04424, applied to EOB by Buonanno et. al. 
1901.07102). 
• Even more recently, a paper by Henn & Mistlberger 
(1902. 07221) has computed massless 2->2 scattering 
to three loops (O(G4)) in N=8 SUGRA. Comparison 
under way… 
• A complete answer including radiation @ 3PM level 
within reach? Important for improving EOB (Damour, 
1710.10599).



Summarizing part II 

GW’s from ultra-relativistic collisions is an interesting 
(though probably academic) theoretical problem.  

It is challenging both analytically and numerically, both 
classically and quantum mechanically. 

The ZFL (for dEGW/dω) is classical & well understood. In 
order to go beyond the ZFL two approaches have been 
followed (besides the CGR one of G+V): 



The first follows the eikonal ACV approach, is limited 
(so far) to small deflection angles, but extends to 
frequencies somewhat beyond 1/R >> 1/b 

It is free from IR infinities which, however, bring 
about logarithmic enhancements at ω < 1/b and are 
responsible for a peak in the flux around ωb = 0.5. 

The second goes via the soft-graviton theorems. It is 
not limited to small-angle scattering but is restricted to 
the ωb < 1 regime. 

Because of IR divergences in 4D, the non-leading soft 
terms are ill defined and need modifications. 



At sub-(and now sub-sub?)-leading level a recipe due 
to Sen and collaborators looks to be confirmed by the 
eikonal-approach results. 
At sub-sub-leading level that same recipe confirms 

the CCV-18 prediction of a bump in the flux @ ωb ~ 
0.5 
Eventually, one would like to extend these results to 

arbitrary masses and kinematics and to combine them 
with recent ones on the conservative gravitational 
potential at 3PM level, leading hopefully to a full 
understanding of gravitational scattering and 
radiation at that level. 
With such a motivation in mind I’m pleased to 

announce: 



Workshop on 
Gravitational scattering, 

inspiral, and radiation 
(GGI, May 18-July 5, 2020, not 

incompatible with Amplitudes 2020) 



Thank you! 


