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Abstract
We present the calculation of all two-loop five-parton helicity amplitudes [1] required for the computation of

NNLO QCD corrections to the production of three jets at hadron colliders in the leading-color approximation. We
obtain the analytic form of the amplitudes from exact numerical evaluations over finite fields. Their systematic
simplification using multivariate partial-fraction decomposition leads to a particularly compact form.

Motivation

After a first phase of the LHC which culminated in
the discovery of the Higgs boson by the ATLAS
and CMS collaborations, the experiments have
moved towards a phase of high-precision measure-
ments that is probing the Standard Model at the
percent level for several observables. Maximiz-
ing the impact of the new data requires theoretical
predictions of similar precision. In practice, this
means that NNLO QCD results are required. A
crucial ingredient in obtaining theory predictions
is the evaluation of two-loop amplitudes.
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Two-loop Amplitudes
We consider all five-parton amplitudes at leading-color. They can be decomposed into partial ampli-
tudes A,

A(1, 2, 3, 4, 5)
∣∣
leading color =

∑
σ∈S

CσA(σ(1), σ(2), σ(3), σ(4), σ(5)) ,

where all properties of each particle (parton type, momentum, helicity, etc.) are kept implicit. S
denotes the symmetry group of the color decomposition for each parton type, and Cσ is a color factor.

Feynman diagrams

Tensor reduction [Passarino, Veltman ’79]

Integration-by-parts identities
[Tkachov, Chetyrkin ’81]

Sum of master integrals

A(2) =
∑

Γ

∑
i∈MΓ

cΓ,i(ε) IΓ,i(ε)

Master integrals
direct computation, differential equations,

numerical integration, etc.

Integrated amplitude

The partial amplitudes have a perturbative expansion in the
QCD coupling αs, and we denote by A(k) a k-loop partial
amplitude.
Computing the amplitudeA(2) means determining its decom-
position into a linear combination of master integrals IΓ,i.
The complete set of master integrals is determined by the
kinematics only, and thus common to all five-parton ampli-
tudes. For five-point massless amplitudes, all master inte-
grals are known [2, 3] and the main task is to determine the
coefficients cΓ,i.

Difficulties of the standard approach:
•Very sensitive to the number of variables on which the am-

plitude depends
• Intermediate expressions become very large, mainly due to

the complexity of the integration-by-parts (IBP) identities
•Obscures the simplicity of the final expressions

The amplitudes we are interested in depend on four dimen-
sionless variables and the complexity of the required IBP
tables makes this approach too inefficient for their calcula-
tion.

Two-Loop Numerical Unitarity
To reduce amplitudes to master integrals we employ the two-loop numerical unitarity method [4, 5].
First one constructs an ansatz for the integrand of the amplitude in terms of a set of tensor insertions
[4], which are chosen so that they are separated into terms that integrate to master integrals (i ∈MΓ)
and surface terms which integrate to zero (i ∈ SΓ)

A(2)(`l) =
∑
Γ∈∆

∑
i∈MΓ∪SΓ

cΓ,i
mΓ,i(`l)∏
j∈PΓ

ρj

The coefficients cΓ,i (for i ∈MΓ) are determined by solving a system of linear equations constructed
by exploring the factorization properties of the integrand when propagators are put on-shell.

`2
i−m2

i→ 0
−−−−−−−→
i∈{1...4}

=
∑
i

ci mi(`)

The required D-dimensional tree amplitudes can be evaluated efficiently through off-shell recursion.
The numerical evaluations are performed using finite-field arithmetic, allowing to efficiently obtain
exact results for rational phase-space points. This is key for the task of functional reconstruction.

product of tree amplitudes

ansatz

Dimensional Regularization in a Numerical Framework
We regularize divergences of loop amplitudes by analytic continuation of the dimensionality of space-
time D. Tensor representation are then formally infinite, which is in conflict with numerical evalua-
tions.

Regularization
Compute in D = 4 − 2ε dimensions
including tensor and spinor representa-
tion.

Numerical framework
Explicit finite-dimensional representa-
tions of all objects.

Finite-dimensional formulation
Understand how relevant information
can be extracted from (a set of) com-
putations in integer dimensions

1. Identify and separate the sources of D-dependence: D — loop momenta, enters through IBPs
Ds — tensor and spinor representations

2. Exploit the fact that infinite-dimensional representations must agree with finite when Ds is integer

Mn(Ds) =

2∑
i=0

Kn,i Di
s, A =

∑
n

vnMn

3. To evaluate M(Ds) external states must be embedded into a higher-dimensional space. This is
trivial for vector particles. For fermions however there is an ambiguity, and we make use of a
tensor decomposition in a carefully constructed basis to identify relevant tensor structures.

open (Ds − 4) indices

only 4-dim objects (definite helicity)

Reconstruction of Analytics from Numerical Samples

Any multivariate rational function f (x) =
∑

α nαx
α∑

β dβx
β can be reconstructed from its numerical evalua-

tions [6]. Numerical unitarity provides the means to evaluate the master-integral coefficients directly,
which are rational functions of external kinematics (and ε). Thus it is possible to obtain the analytic
results for the master-integral coefficients by evaluating them numerically on a sufficient number
of points. The whole reconstruction procedure can be carried out in a finite field leading to major
performance boost.

The number of points required for reconstruction is given by∼
(
R + n
n

)
, with the total degreeR and

the number of variables n. For two-loop five-parton amplitudes, the degree of coefficients cΓ,i is in
general too high and makes reconstruction challenging. However a number of physically-motivated
ideas can help to find much simpler objects to reconstruct.

• Expand the amplitude around ε = 0
and choose a “good” basis hi ∈ B of
special functions [3]

A(2) =
∑
i∈B

0∑
k=−4

εk c̃k,ihi +O(ε)

• Remove redundant information from
lower loops, consider a finite remain-
der

R(2) ≡ A(2) − I(1)A(1) − I(2)A(0) =∑
i∈B

ri hi 0 5 10 15 20 25 30 35 40

Numerator degree

(q+, q̄−, Q−, Q̄+, g+)

(q+, q̄−, Q+, Q̄−, g+)

(q+, q̄−, Q−, Q̄+, g−)

(q+, q̄−, g+, g+, g+)

(q+, q̄−, g−, g+, g+)

(q+, q̄−, g+, g+, g−)

(q+, q̄−, g+, g−, g+)

(g+, g+, g+, g+, g+)

(g−, g+, g+, g+, g+)

(g−, g−, g+, g+, g+)

(g−, g+, g−, g+, g+)

20

20

21

19

24

27

27

11

26

30

34

•Denominators are connected to properties of integral functions: can be determined from a recon-
struction on a one-dimensional curve, which requires only a few evaluations

ri(x) =
ni(x)

W (x)~qi
,

where W (x) are letters of the alphabet, corresponding to branch points of integral functions.

• The choice of variables has a large impact [1].

Results
The two-loop D-dimensional unitarity methods and analytic reconstruction algo-
rithms are implemented in a C++ library Caravel, which supports both floating
point and finite-field evaluations.

•We obtained analytical expressions through reconstruction for 33 amplitudes.

• For the most complex amplitude ∼ 95000 phase-space points are used, with av-
erage evaluation time of ∼ 4.5 min/point.

• Systematic application of multivariate partial fractioning to simplify the obtained
expressions leads to very compact expressions: total size ∼ 10 Mb (uncompressed)

The analytic expressions for all amplitudes are publicly available as ancillary files of [1].
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