Abstract
We present the calculation of all two-loop five-parton helicity amplitudes [1] required for the computation of

NNLO QCD corrections to the production of three jets at hadron colliders in the leading-color approximation. We
obtain the analytic form of the amplitudes from exact numerical evaluations over finite fields. Their systematic
simplification using multivariate partial-fraction decomposition leads to a particularly compact form.
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Two-loop Amplitudes

We consider all five-parton amplitudes at leading-color. They can be decomposed into partial ampli-
tudes A,
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where all properties of each particle (parton type, momentum, helicity, etc.) are kept implicit. S

denotes the symmetry group of the color decomposition for each parton type, and C; is a color factor.
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The partial amplitudes have a perturbative expansion in the
QCD coupling ag, and we denote by AR) o k-loop partial
amplitude.

Computing the amplitude A2) means determining its decom-

Integration-by-parts identities position into a linear combination of master integrals Zr ;.

Tkachov, Chetyrkin *81] The complete set of master integrals 1s determined by the

I kinematics only, and thus common to all five-parton ampli-

tudes. For five-point massless amplitudes, all master inte-

grals are known [2, 3] and the main task 1s to determine the
coefficients cr ;.

Feynman diagrams

Tensor reduction [Passarino, Veltman >79]

Sum of master integrals
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Difficulties of the standard approach:

e Very sensitive to the number of variables on which the am-
plitude depends

Master integrals

direct computation, differential equations, e Intermediate expressions become very large, mainly due to

the complexity of the integration-by-parts (IBP) identities

numerical integration, etc.

i e Obscures the simplicity of the final expressions

The amplitudes we are interested in depend on four dimen-
sionless variables and the complexity of the required IBP
tables makes this approach too inefficient for their calcula-
tion.

Integrated amplitude

Two-Loop Numerical Unitarity

To reduce amplitudes to master integrals we employ the two-loop numerical unitarity method [4, 5].
First one constructs an ansatz for the integrand of the amplitude in terms of a set of tensor insertions
[4], which are chosen so that they are separated into terms that integrate to master integrals (z € M)
and surface terms which integrate to zero (¢ € Sr)

A<2>(€l) _ Z Z cr. mF,i(EQ.

['eA e MpUST HjEPF ,0]

The coetficients cr ; (for : € Mr) are determined by solving a system of linear equations constructed
by exploring the factorization properties of the integrand when propagators are put on-shell.
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The required D-dimensional tree amplitudes can be evaluated efficiently through off-shell recursion.

The numerical evaluations are performed using finite-field arithmetic, allowing to efficiently obtain
exact results for rational phase-space points. This is key for the task of functional reconstruction.

¥ ansatz

Dimensional Regularization in a Numerical Framework

We regularize divergences of loop amplitudes by analytic continuation of the dimensionality of space-
time [). Tensor representation are then formally infinite, which 1s in conflict with numerical evalua-
tions.
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Regularization
Compute in D = 4 — 2¢ dimensions

including fensor and spinor representa-
tion.

Numerical framework

Explicit finite-dimensional representa-
tions of all objects.
(Finite-dimensional formulation
Understand how relevant information

can be extracted from (a set of) com-
putations 1n integer dimensions

— loop momenta, enters through IBPs

1. Identify and separate the sources of /)-dependence: . .
D, — tensor and spinor representations

2. Exploit the fact that infinite-dimensional representations must agree with finite when Dj 1s integer

/qonly 4-dim objects (definite helicity)
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3. To evaluate M(Dg) external states must be embedded into a higher-dimensional space. This is
trivial for vector particles. For fermions however there 1s an ambiguity, and we make use of a
tensor decomposition 1n a carefully constructed basis to 1dentify relevant tensor structures.

Reconstruction of Analytics from Numerical Samples
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Any multivariate rational function f(x) = S 7P can be reconstructed from its numerical evalua-
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tions [6]. Numerical unitarity provides the means to evaluate the master-integral coefficients directly,
which are rational functions of external kinematics (and €). Thus it 1s possible to obtain the analytic
results for the master-integral coefficients by evaluating them numerically on a sufficient number
of points. The whole reconstruction procedure can be carried out in a finite field leading to major
performance boost.

R+n

n
the number of variables n. For two-loop five-parton amplitudes, the degree of coetficients cr ; 1s in

general too high and makes reconstruction challenging. However a number of physically-motivated
1deas can help to find much simpler objects to reconstruct.

The number of points required for reconstruction 1s given by ~ , with the total degree R and

e Expand the amplitude around ¢ = 0
and choose a “good” basis h; € B of
special functions [3]
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e Remove redundant information from
lower loops, consider a finite remain-
der ("7 ,Q,Q%,g7)
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icB Numerator degree

e Denominators are connected to properties of integral functions: can be determined from a recon-
struction on a one-dimensional curve, which requires only a few evaluations

ri(x) =

W(X)Cﬁ’

where W (x) are letters of the alphabet, corresponding to branch points of integral functions.

e The choice of variables has a large impact [1].

Results

The two-loop D-dimensional unitarity methods and analytic reconstruction algo-
rithms are implemented 1n a C++ library Caravel, which supports both floating
point and finite-field evaluations.

e We obtained analytical expressions through reconstruction for 33 amplitudes.

Caravel e For the most complex amplitude ~ 95000 phase-space points are used, with av-
erage evaluation time of ~ 4.5 min/point.

e Systematic application of multivariate partial fractioning to simplify the obtained
expressions leads to very compact expressions: total size ~ 10 Mb (uncompressed)

The analytic expressions for all amplitudes are publicly available as ancillary files of [1].
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