CLUSTER ADJACENCY OF SCATTERING AMPLITUDES

Jack Foster

Analytics of Amplitudes

The analytics of scattering amplitudes have been studied in great detail for several years
leading to new developments in calculating amplitudes. One such development is the
Steinmann relations. These relations dictate the order in which one can perform
branch cuts of loop amplitudes.
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Figure 1: A cut in sgy5 followed by one is so34 is forbidden as they overlap [1].
This feature demonstrates the factorisation of loops into products of trees on poles but
more importantly it provides a condition to impose when calculating amplitudes. It is
conceivable that understanding more properties, such as the Steinmann relations, could
allow us to write down amplitudes without calculation.

Cluster Algebras

Cluster algebras were first introduced in [2] and connected to amplitudes in [3]. It was
observed that the poles of n-point amplitudes in planar N' = 4 SYM are given by cluster
A-coordinates on the kinematic configuration space Conf,(P?). A cluster algebra consists of
different clusters which one can move between via an operation called mutation. Each clus-
ter can be represented by a quiver diagram where each node or A-coordinate is connected
to at least one other node by arrows which encode how each node mutates.
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Figure 2: A mutation on (1235) in the Confg(P?) initial cluster.

Cluster algebras have a geometric interpretation in their associahedra; clusters correspond
to vertices, mutations between them are given by edges, and the nodes are faces.
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Figure 3: The Confs(P?) associahedron.

We can construct neighbour sets for each unfrozen node, being the set of all nodes which
appear in at least one cluster with a given node. We then define cluster adjacency [4]:

Consecutive residues/branch cuts can only be taken around poles which
appear in a cluster together i.e. their faces meet at an edge in the
associahedron.

We analysed all available six and seven-point amplitudes in SYM and found no counterex-
amples. However certain pairs allowed by cluster adjacency did not appear in any available
seven-point amplitudes.
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& There are clusters where the coordinates appear together connected by an arrow.

®: There are clusters where the coordinates appear together but they are never connected.

O: The coordinates never appear in the same cluster but there is a mutation that links them.
<1 The coordinates do not appear in the same cluster nor there is a mutation that links them.
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Loop Integrals

In 4] we calculate the symbol of a seven-point, three-loop, massless pentaladder in SYM
using the Steinmann cluster bootstrap [5| along with differential equations [6].
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Figure 4: A differential relation relating seven-point, three and two-loop integrals.

where O;; = Z; - aizj and NV is a numerator to ensure the three-loop integral is finite and
has unit leading singularity.

Analysing the symbol of the three-loop integral, we found one of the missing pairs mentioned
above thus supporting our cluster adjacency conjecture.

BCFW and NMHV

Cluster adjacency was first defined in terms of branch cuts of loop amplitudes however it

is also applicable to trees. The BCFW expansion of the n-point NMHYV tree-amplitude of
SYM (divided by the MHV tree) is given by

A=y [Lid+ 155 + 1]
I<i<y<n
where the R-invariant |[ijkim| is given by
1
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The poles of R-invariants are given by cluster A-coordinates and in [7| we prove that all
R-invariants are cluster adjacent i.e. all poles of a given R-invariant can be found together

within a cluster. Hence we identify R-invariants with clusters in Confg(P?) and subalgebras
in Conf,(P?) for n > 6. An example of [12345] in Conf;(P?) is given below,
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Figure 5: A cluster containing the poles (blue) of [12345] in Conf7(P?). The nodes highlighted in red generate an As subalgebra.

We also conjecture that all BCFW terms are cluster adjacent by analysing the BCFW
expansion of tree-amplitudes up to eight-point N°MHV finding no counterexample.
R-invariants are a type of Yangian invariant and recently it was conjectured, through use
of the Sklyanin bracket, that every Yangian invariant in SYM is cluster adjacent [8].

Seven-Point, Four-Loop, NMHV Amplitude in N =4 SYM

In 9] we construct a manifestly cluster adjacent form of the seven-point, four-loop planar
NMHV amplitude in SYM

5;4) = e%)(m) + e§43>(13) + 6%?(14) + cyclic

where (12) = [34567| and e;; are cluster adjacent symbols such that their final entries
are cluster adjacent with all the poles of the R-invariant they multiply. These symbols,
however, are only integrable on identities that the R-invariants satisty

(12) — (13) + (14) — (15) + (16) — (17) =0 & cyclic.

On these identities the amplitude takes the form given in (2.13) of |9].

Cluster adjacency along with integrability on the identities, no spurious poles, and good
collinear limits fixed our ansatz coefficients completely. Writing the amplitude in a mani-
festly cluster adjacent, albeit non-integrable, form also produced it in a more compact way
than when manifestly integrable.

Conclusion
Amplitudes are rich in analytic structure and understanding this structure is key to un-

derstanding amplitudes. Cluster adjacency controls this analytic structure and allows us
to calculate previously uncalculated amplitudes. It also provides algebraic and geometric
interpretations of poles of amplitudes and how they talk to each other.
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