On the Poincaré dual of Feynman integrals Fonds de recherche

Abstract

Recently, it has been shown that the intersection numbers of twisted differential forms are equivalent
to tree-level string theory and CHY scattering amplitudes [1]. Intersections have also been used
to algebraically generate integration by parts identities and differential equations for maximal cut
Feynman integrals [2]. We extend these ideas to non-maximally cut Feynman integrals by introducing
the Poincaré dual of a Feynman integral.

Feynman integrals

e We define a Feynman integral in 4—2¢ dimensions to be
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where u is a multi-valued O-form. At 1-loop, ¢ is a 5-form with u = (81)_1_6, and at 2-loops, ¢
is a 11-form with w = (¢7 | 05 | — €11 - €5 1)~ (While u is multi-valued, ¢ is single valued.)
e Similar to Baikov representation, but applies simultaneously to all topologies.

Twisted and relative cohomology

® In a nutshell, the homology (H,) and cohomology (H") of a manifold X classify the possible
integration contours and integrands

Figure: Integration contours in H;(CP'\{a,b,c}, {d,e}) and H;(CP'\{a,b, c}, {d, e};w), where the red points
{a,b, c}, branch points of u, have been removed from the manifold and the blue points {d, e} are allowed
boundaries.

o We are interested in Feynman integrals modulo integration by parts (IBP)
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where V, = d + wA is the covariant derivative and w = dlog . That is, Feynman integrals
live in the twisted cohomology

- {¢ € {n-forms on X\{uD = 0}}|V,¢ = 0}
B V. {(n—1)-forms on X\{uD =0}}
Exhibits branch cuts at © = 0 and propagator poles at D = 0.
o n-forms are dual to integration cycles, but also to n-forms via (simpler!) intersection pairing

o Example: let u = 2°(1—x)" and ¢ = l,(ffx) c H'(CP"\{0,1,00};u), see [1]. Intersection is:

H*(X\{uD = 0};u) (4)
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where |, maps ¢ (or ¢") to its compactly supported version
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e Poincaré duals of Feynman integrals live in 4 4 2¢ dimension (€ is flipped to cancel branch cuts
in " A ¢), and must have zeros (relative cohomology) to cancel propagator poles [3]:
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|dea: intersection pairing between the two H"'s is nondegenerate, thus physical equivalence.
e Dual forms localize on cuts, because dual H™ would be trivial without D = 0 boundaries:
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Application to generalized unitarity

e Dual forms automatically extract integral coefficients mod IBP

e Example: well-known that bubbles, triangles, boxes and pentagons form a basis for all 1-loop
integrals (say for massless propagators and 4D external momenta):
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By definition, cpu, = (@), |01), etc.

® Dual forms rigorously live on cuts. Schematically:
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e Straightforward to show that dual forms are orthonormal to scalar basis:
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For example, intersecting the bubble dual with the triangle we find
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where we have used fiber integration to trivially integrate out perpendicular components /3, ¢,.
Since bubble dual is regular where triangle has simple poles and vice versa, intersection vanishes.

)1+6> (12)

Y

) =0 (13)

McGill University

. Nature et
g MCGlll Simon Caron-Huot and Andrzej Pokraka* tedmggébec

Generalized Unitarity: features

At finite ¢, this computes integral coefficients in terms of Laurent series of cut amplitudes
near £, — 0 (and possibly £, = 00).

Smooth ¢ — 0 limit: reproduces formulas for bubble, triangle and box coefficients in d = 4.

At 2-loops, we checked (by pen and paper!) that they automatically yield the master contours
of [4] for double box heptacut.

Thus, dual forms provide a framework for generalized unitarity above 1-loop and
also for sub-topologies.

Preview: Differential equations for the massless 2-loop double box
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Figure: Double box master integrals from [5]. We focus here on last three forms ¢g, ¢7, ¢s.

To “solve” scattering amplitudes: need integral coefficients, and to do the integrals.
Can one apply differential equation method directly to dual forms?

For integrals, differentiating can't add propagators, leading to block triangular structure:
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where x =t/s, V, = d + w,/\ and w, = d, log u.
For dual forms, information flows in the opposite direction: expect upper triangular

Example: start from %V- It is a 11-form, with 5 df’s, two trivial (perpendicular) integrals, and a
nontrivial 4-form that lives strictly on the 5-cut:

ol = dO(D) A - ANdO(Ds) A ¢ (15)

where ¢Y € H*((5—cut)\{u = 0}, {Ds = 0, D; = 0}; u).
Were it not for the boundaries, dim H* = 1. Thus we can find a(z) and IBP vector £ such that:

V.0 = a(z)d] + V,.E. (16)
To recover off-diagonal terms, multiply IBP vector £ by step functions (| D;|* > ¢) and pick up

df's. (In fact, since dimH* = 0, do twice to pick two extra df's localizing on heptacut):
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Note that (18) is consistent with (14) transposed, up to a (computable) basis change —
“natural” dual forms pick a different basis, in fact, simplifying the form of the differential
equations. Differential equations for the remaining dual master integrals are in progress.

To summarize, dual forms live on cuts: only IBPs on cuts ever needed. Evidence that
off-diagonal terms obtained simply by multiplying IBPs by step functions, and collecting dé.

Conclusions

We have introduced the Poincaré dual forms for Feynman integrals and motivated their utility through
several examples. We argue that working with the dual forms is advantageous for the following reasons:
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e The dual forms are supported only on cuts.

® They have nice ¢ — 0 limits, where they are dual to the master contours that extract integral

coefficients, providing a framework for understanding generalized unitarity (mod IBPs) for
higher-loop integrals and sub-topologies

e Play a similar role as integration cycles, but easier to work with since all operations algebraic.

References

S. Mizera, Aspects of Scattering Amplitudes and Moduli Space Localization, arxiv:1906.02099. S. Mizera, Scattering Amplitudes from

tersection Theory, Phys. Rev. Lett. 120, 141602 (2018)

M. Pierpaolo, S. Mizera, Feynman integrals and intersection theory, JHEP 2, 139 (2019). H. Frellesvig, F.Gasparotto, S. Laporta, M. Mandal,
Mastrolia, L.Mattiazzi, S. Mizera, Decomposition of Feynman Integrals on the Maximal Cut by Intersection Numbers, JHEP 05, 153 (2019)
K. Matsumoto, Relative twisted homology and cohomology groups associated with Lauricella’s F'p, arXiv:1804.00366.

S. Caron-Huot, K. J. Larsen, Uniqueness of two-loop master contours, JHEP 10, 026 (2012).

J. M. Henn, Multiloop Integrals in Dimensional Regularization Made Simple, Phys. Rev. Lett. 110, 251601 (2013)



