

https://en.wikipedia.org/wiki/German_Physical_Society

Simulation of Radiofrequency Accelerators

by Alexander Müller and Isabelle Strecker

Supervisor:

Hermann Pommerenke

17.05.2019

HSSIP 2019

Structure

- 1.) Step by Step modelling of an electrostatic accelerator
- 2.) Optimizing the electrostatic accelerator
- 3.) Modelling of a RF Cavity
- 4.) Experiment with soup can

- All simulations are made with CST microwave studio
- Two PEC₁ plates are constructed opposite towards each other
- A Vacuum is put in between of them
- To one plate a voltage of -5V is applied

- Electric field
- Two opposite plates

- A circle is cut into the plates
- Particles now have a way to get through

- Electric field
- Two opposite plates
- With holes

• Cutting out rings

- Electric field
- Two opposite ring plates

• Rounding off the edges

- Electric field
- Two opposite ring plates
- Rounded edges

(Adjustment of the previous to realistic Numbers)

- Changing the inner radius
- Inner radii values from 2.5cm to 12.5cm

With a decreasing inner radius, the electric field gets stronger in the accelerating gap

- Changing the edge radius
- Edge radii values from 0.1cm to 5cm

With a decreasing edge radius, the electric field in the accelerating gap gets stronger

- Creating a cylinder made of copper
- Inner domain is made of vacuum
- Radius of the cylinder is adjusted to a frequency of 1GHz

 $\rightarrow f_0 = c^* \chi_{01} / 2\pi r$

- Electric field
- Cavity with copper shell and vacuum

- Creating a thinner, longer cylinder
- \rightarrow Acting as beam pipe
- Edges are rounded off

- Electric field
- Cavity with cylinder through middle

Comparison of different aspects between a flat and an elliptic cavity

	Flat Cavity		Elliptic Cavity
R over Q (Ohm)		60.418	286.096
Q-Factor		12000	17000
Frequency GHz		0.6	1
Surface Emission (E _{max} /E _{acc})		1.91	3.79
Magnetic quench (mT/(MV/m))		4.125	2.27

- Installation of an input coupler inside of the can
- → Magnetic loop antenna
- Antenna will be aligned to the direction of the magnetic field of the desired mode

- Open side of the can is covered with aluminium foil
- Coaxial cable is connected to the antenna

- Magnetic field has a vortex shape
- Antenna is adjusted to excite this mode

 Magnetic field of the antenna is going through the middle of the two loops

- Repetition of the experiment
- Antenna will be rotated by 90°
- Now the antenna should excite other modes

Thank you fors attention!

Quellen

• CST microwave studio

Bessel function

