

Exotic searches in multijet final states

Abhijith Gandrakota

on behalf of CMS Collabotaion

Introduction

We will look at:

- Recent resonant Exotic searches in multi jet final states using the CMS Run 2 datasets @ 13 TeV
- These multi jet searches are modeled on R Parity Violating (RPV) SUSY, We will
 focus on the multi jet searches with hadronic RPV (UDD) coupling
- Among the CMS RPV SUSY Multijet searches, talk will be focused on the following:
 - $\tilde{t} \rightarrow qq(bq)$ (EXO-17-021a)
 - . $\tilde{q} o qqqq$ and $\tilde{g} o qqqqq$ (EXO-17-022b)
 - $\tilde{g} \rightarrow qqq$ (EXO-17-030°)

A little bit about RPV SUSY

- Natural (MSSM) SUSY is very desirable
 - Solves naturalness problem and provides a Dark Matter candidate
- But Searches in ATLAS and CMS have searched through the phase space and there
 is no hint in our current results
- We can reconsider our view of SUSY and take a look at RPV

$$W_{R_p} = \left[\mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c \right] + \left[\frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c \right]$$

 We'll look at the searches considering baryon number violation that will lead multiquark final states

RPV stop

- Model on pair produced stop decaying via $\lambda"_{312}$ and $\lambda"_{323}$
- Search was performed in two mass regions:
 - Boosted: Two merged AK8 jet events
 - Resolved: paired AK4 dijets in four jet events
- Looks for excess (bump) on average boosted AK8 dijet mass spectrum and paired AK4 dijet mass, in qq and bq final states
- Used substructure (tau variabels) and grooming (Pruning) to access low mass dijet spectrum

RPV stop:

Selection:

- Hadronic and substructure triggers: HT>900
- Require two AK8 jets with
 - Pt > 150 GeV, $|\eta| < 2.5$, $M_{asym} < 0.1$, $|\Delta \eta| < 1.5$ $T_{21} < 0.45$, $T_{32} > 0.57$

Background estimation:

- Dominant background i.e, QCD is estimated with using data-driven ABCD method
- ABCD regions are chosen in the space of M_{asym} and $\Delta\eta$
- Subdominant backgrounds (ttbar, W/Z+jets) is estimated using MC
- All the backgrounds are validated in CR

RPV stop:

Selection:

- Hadronic triggers: HT>900
- Require four AK4 jets with
 - Pt > 80 GeV, $|\eta|$ < 2.5, M_{asym} < 0.1, $\Delta \eta_{dijet}$ < 1.5, Δ > 200 GeV

Background estimation:

 Dominant background i.e, QCD is estimated by fitting smooth three parameter function to data

$$\frac{dN}{d\bar{M}} = \frac{p_0(1-x)^{p_1}}{x^{p_2}}$$

RPV Stop: results

- No excess found in average boosted AK8 dijet mass spectrum and paired AK4 dijet mass, in qq and bq final states
- Results interpreted in the context of pair production hadronic RPV stops.
 - Limits set from $80 \ge m_{\tilde{t}} \ge 520$ GeV for inclusive search, and $80 \ge m_{\tilde{t}} \ge 525$ GeV(except for $270 \ge m_{\tilde{t}} \ge 340$ GeV and $340 \ge m_{\tilde{t}} \ge 400$ GeV) for b-tagged search.

RPV squark

- Search for pair produced resonance decaying into at least four quarks
- Unexplored region of the SUSY model space until recently
- Uses fat jets to look for resonances decaying to multiple quarks
- Looks for resonance in CA12 dijet mass
- Uses N-subjetiness variables and pruning to suppress QCD and access low mass regions

RPV squark

Selection:

- Hadronic and substructure triggers: HT>900
- Require two CA12 jets with
 - Pt > 400 GeV, $|\eta| < 2$, $M_{asym} < 0.1$, $|\Delta \eta| < 1$ $T_{21} < 0.75$, $T_{42} > 0.50$, $T_{43} < 0.80$

Background estimation:

- Dominant background i.e, QCD is estimated with using a new data-driven method:
- Treat the leading fatjet mass distribution as a probability distribution P(m) from which two tagged fatjets are sampled.
- Use this to calculate $p_{avg}(\bar{m})$. There by getting the QCD bkg template.
- All the backgrounds are validated in CR

RPV squark

- No excess found in average CA12 dijet mass spectrum
- Results interpreted in the context of pair production hadronic RPV stops decaying to 4 quarks and RPV gluinos decaying to 5 quarks.
 - · Limits set from 100 $\geq m_{\tilde{t}} \geq$ 700 GeV for RPV stops, and 100 $\geq m_{\tilde{g}} \geq$ 1410 GeV for RPV gluinos

RPV Gluino

- Search for pair produced three-jet resonances.
- Modeled on RPV gluino decaying to 3 quarks with intermediate off-shell quarks.
- Employed jet-ensemble technique: Looks for all possible three jet combinations (triplet) and resulting triplet pair combinations.
- Looked for excess (bump) in triplet mass spectrum.
- Uses data scouting techniques and new background functions to cover wide mass rages
- First analysis to use Particle-Flow (PF) Scouting.
- Implemented novel techniques such as MDS and selection algorithm to gain higher sensitivity.

Data Scouting

- Triggering is constrained by the CPU time and memory bandwidth available
- CMS records ~ 1kHz of events for physics analysis
- Forces triggers to have high thresholds, making CMS blind to physics at low masses
- Solution : Data Scouting
 - Make physics objets, online at HLT
 - Store only the required information:
 - Four vectors, etc . . .
 - Reduces event sizes (100x smaller)
 - Results in lower triggering thresholds

Dalitz variables & Mass Distance squared

- Used to extract rich internal dynamics of a triplet and target certain decay topologies
- For a triplet, define dimensionless Dalitz variables as:

$$\hat{m}(3,2)_{ij}^2 = \frac{m_{ij}^2}{m_{ijk}^2 + m_i^2 + m_j^2 + m_k^2} \quad \text{(i,j,k \in Jets 1,2,3)}$$

- Plotting the resulting three Dalitz variables gives information about internal dynamics of the triplet
- Use this information to define a distance measure,
 Mass Distance Squared:

$$D_{[3,2]}^2 = \sum_{i>j} \left(\hat{m}_{ij} - \frac{1}{\sqrt{3}} \right)^2$$

- Suppresses background, makes QCD turn at lower masses
- Extended this formalism to event-level, to target signal topologies

$$D_{[(6,3)+(3,2)]}^2 = \sum_{i< j< k} \left(\sqrt{\hat{m}(6,3)_{ijk}^2 + D_{[3,2],ijk}^2} - \frac{1}{\sqrt{20}} \right)^2$$

RPV Gluino

Strategy:

- Use a multi-level selection algorithm at event, pair and triplet level.
- Split the search domain into four mass regions, optimized selection accordingly.
- Triggers used: PF Scouting and Hadronic triggers
- Use hadronic top peak to estimate corrections for PF scouting.
- Background estimation:
 - Dominant bkg: QCD
 - New function inspired by Planck's law of blackbody radiation, is used to model QCD turn on in Region 1

$$\frac{dN}{dx} = \frac{1}{(x+c)^{5+d\ln\frac{x}{\sqrt{s}}}} \frac{a}{e^{\frac{b}{x+c}} - 1}$$

 Four parameter function was used to model QCD in other three regions

$$\frac{dN}{dx} = p_0 \frac{\left(1 - \frac{x}{\sqrt{s}}\right)^{p_1}}{\left(\frac{x}{\sqrt{s}}\right)^{p_2 + p_3 \ln \frac{x}{\sqrt{s}}}}$$

RPV gluino

- No excess found in triplet mass spectrum
- Results interpreted in context of pair produced gluinos, excluding upto 1.5 TeV
- The limits set are the most stringent on this model, till date

Summay

- There no excess found in the data, in exotic searches to multi jet final states (Yet)
- Presented here cover some part of the multi-jet phase space, more are in works
- Work is in progress to obtain fat jets from PF Scouting and apply substructure techniques to search for even low masses
- New Exotic searches to multi-jet final States are in works!
 - Current on going work on singly produced three-jets resonances
- There still a lot of uncovered RPV phase space

Back up

MDS: Event Level Variable.

- We take Idea of MDS in triplet and extend this to event level by taking 3-jet invariant Mass in 6jet system.
- This variable measures the spread of jets (triplets) in a six jet ensemble
- Construct Normalized 3-jet Invariant mass $\hat{m}(6,3)_{ijk}^2 = \frac{m_{ijk}^2}{4\ m_{ijklmn}^2 + 6\ \sum_i m_i^2} \quad \text{where i...,n} = \{1,2,3,4,5,6\}$ top 6 Pt Jets
- This information is combined with $D^2_{[3,2]}$ to create event level variable

$$D_{[(6,3)+(3,2)]}^2 = \sum_{i < j < k} \left(\sqrt{\hat{m}(6,3)_{ijk}^2 + D_{[3,2],ijk}^2} - \frac{1}{\sqrt{20}} \right)^2$$

RPV squark: Event-mixing background estimation

- Treat the leading fatjet mass distribution as a probability distribution P(m) from which two tagged fatjets are sampled.
- The probability to have a fatjet pair with a given average mass is the sum of the product of the probabilities for all mass combinations that result in that average mass (Satisfying $|\Delta\eta|$ and M_{asym} selection)
- The mass of a jet is correlated to its pT. In an event, the pT of one fatjet is correlated to the pT of the other, and both are correlated to the HT
- We correct for this effect by calculating $p_{avg}(\bar{m})$ from tagged fatjets in events with similar HT and then re-weighting each HT bin's contribution to the template

$$P_{\text{avg}}(\overline{m}) = \int_{0}^{2\overline{m}} P(x) \cdot P(2\overline{m} - x) \cdot \theta \left(0.1 - \left| \frac{x - \overline{m}}{\overline{m}} \right| \right) dx$$

RPV gluino: Selection Algorithm

$$P_T$$
, H_T , >= 6 jets, $|\eta|$ < 2.4

Top 6: 6th Jet PT, MDS Event level

Triplet-pair Mass Asymmetry (A_m)

$$\frac{|m_1 - m_2|}{m_1 + m_2}$$

1,2 = Triplets in pair

MDS Triplet level and Delta

The final Mass plot may have multiple entries per event