The Free Electron Laser EuPRAXIA@SPARC_LAB

Augusto MARCELLI on behalf ...

marcelli@lnf.infn.it

Scientific case of the EUPRAXIA@SPARC_LAB

Istituto Nazionale di Fisica Nucleare

ARE THE LIGHT SOURCES SCENARIO COMING AS IN THE (MOVIE) FUTURE?

XLS Users Meeting

What new should be really done?

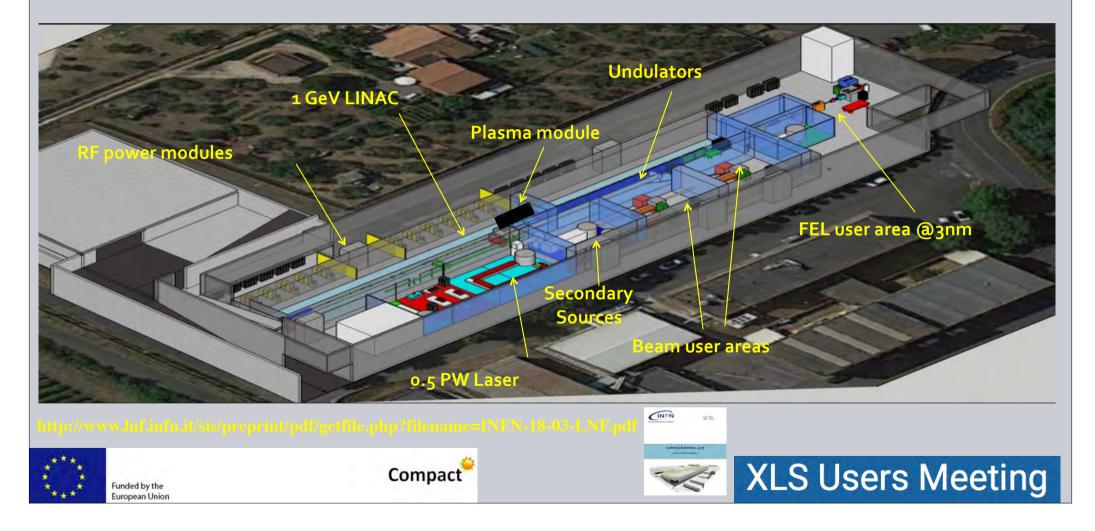
attempts exist to investigate light-light interaction phenomena

• light does not interact with light at low energy density in vacuum

(in the soliton hypothesis at least $\sim 10^{33}$ W/cm² is required!!) World most powerful laser is $\sim 10^{14}$ W!

• Efforts exist to induce and observe light-light interaction at a lower density to use photons to control photons (quantum communications, quantum computing, quantum optics, etc.)

Osaka, March 5, 2011



INFN

Compact

EuPRAXIA@SPARC_LAB

D. Alesini^a, M. P. Anania^a, M. Artioli^b, A. Bacci^c, S. Bartocci^d, R. Bedogni^a, M. Bellaveglia^a, A. Biagioni^a, F. Bisesto^a, F. Brandi^e, E. Brentegani^a, F. Broggi^c, B. Buonomo^a, P. Campana^a, G. Campogiani^a, C. Cannaos^d, S. Cantarella^a, F. Cardelli^a, M. Carpanese^f, M. Castellano^a, G. Castorina^g, N. Catalan Lasheras^h, E. Chiadroni^a, A. Cianchiⁱ, R. Cimino^a, F. Ciocci^f, D. Cirrincione^j, G. A. P. Cirrone^k, R. Clementi^a, M. Coreno^l, R. Corsini^h, M. Croia^a, A. Curcio^a, G. Costa^a, C. Curatolo^c, G. Cuttone^k, S. Dabagov^a, G. Dattoli^f, G. D'Auria^l, I. Debrot^c, M. Diomede^{a,g}, A. Drago^a, D. Di Giovenale^a, S. Di Mitri¹, G. Di Pirro^a, A. Esposito^a, M. Faiferri^d, M. Ferrario^a, L. Ficcadenti^g, F. Filippi^a, O. Frasciello^a, A. Gallo^a, A. Ghigo^a, L. Giannessi^{f,l}, A. Giribono^a, L. A. Gizzi^e, A. Grudiev^h, S. Guiducci^a, P. Koester^e, S. Incremona^a, F. Jungo^a, L. Labate^e, A. Latina^h, S. Licciardi^f, V. Lollo^a, S. Lupi^g, R. Manca^d, A. Marcelli^{a,m,n}, M. Marini^d, A. Marocchino^a, M. Marongiu^g, V. Martinelli^a, C. Masciovecchio¹, C. Mastino^d, A. Michelotti^a, C. Milardi^a, M. Migliorati^g, V. Minicozziⁱ, F. Mira^g, S. Moranteⁱ, A. Mostacci^g, F. Nguyen^f, S. Pagnutti^f, L. Palumbo^g, L. Pellegrino^a, A. Petralia^f, V. Petrillo^o, L. Piersanti^a, S. Pioli^a, D. Polese^d, R. Pompili^a, F. Pusceddu^d, A. Ricci^m, R. Ricci^a, R. Rochow^l, S. Romeo^a, J. B. Rosenzweig^p, M. Rossetti Conti^o, A. R. Rossi^c, U. Rotundo^a, L. Sabbatini^a, E. Sabia^f, O. Sans Plannell^a, D. Schulte^h, J. Scifo^a, V. Scuderi^k, L. Serafini^c, B. Spataro^a, A. Stecchi^a, A. Stella^a, V. Shpakov^a, F. Stellatoⁱ, P. Tomassini^e, E. Turco^d, C. Vaccarezza^a, A. Vacchi^j, A. Vannozzi^a, G. Vantaggiato^e, A. Variola^a, S. Vescovi^a, F. Villa^a, W. Wuensch^h, A. Zigler^q, M. Zobov^a

^a INFN - Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati, Italy

^b ENEA - Centro Ricerche Bologna, Via Martiri Monte Sole 4, 40129 Bologna, Italy

^c INFN - Milano section, Via Celoria 16, 20133 Milan, Italy

^d Universitá degli Studi di Sassari, Dip. di Architettura, Design e Urbanistica ad Alghero, Palazzo del Pou Salit - Piazza Duomo 6, 07041 Alghero, Italy

^e Intense Laser Irradiation Laboratory (ILIL), Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy and INFN Pisa section, Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy

f ENEA - Centro Ricerche Frascati, Via E. Fermi 45, 00044 Frascati, Italy

^g Sapienza University of Roma and INFN, P.le Aldo Moro 2, 00185 Rome, Italy

h CERN, CH-1211 Geneva 23, Switzerland

Compact

ⁱ Universitá degli Studi di Roma Tor Vergata and INFN, Via della Ricerca Scientifica 1, 00133 Rome, Italy

^j INFN - Trieste section, Via Valerio 2, 34127 Trieste, Italy

^k INFN - Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy

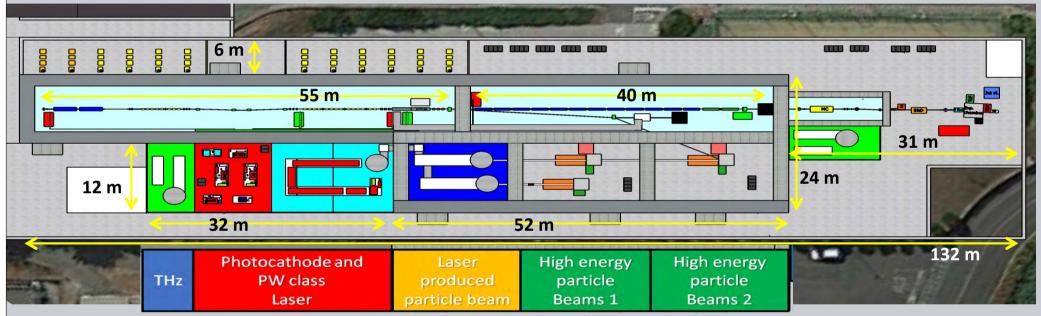
¹ Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy

^m RICMASS, Rome International Center for Materials Science Superstripes, 00185 Rome, Italy

ⁿ ISM-CNR, Basovizza Area Science Park, Elettra Lab, 34149 Trieste - Italy

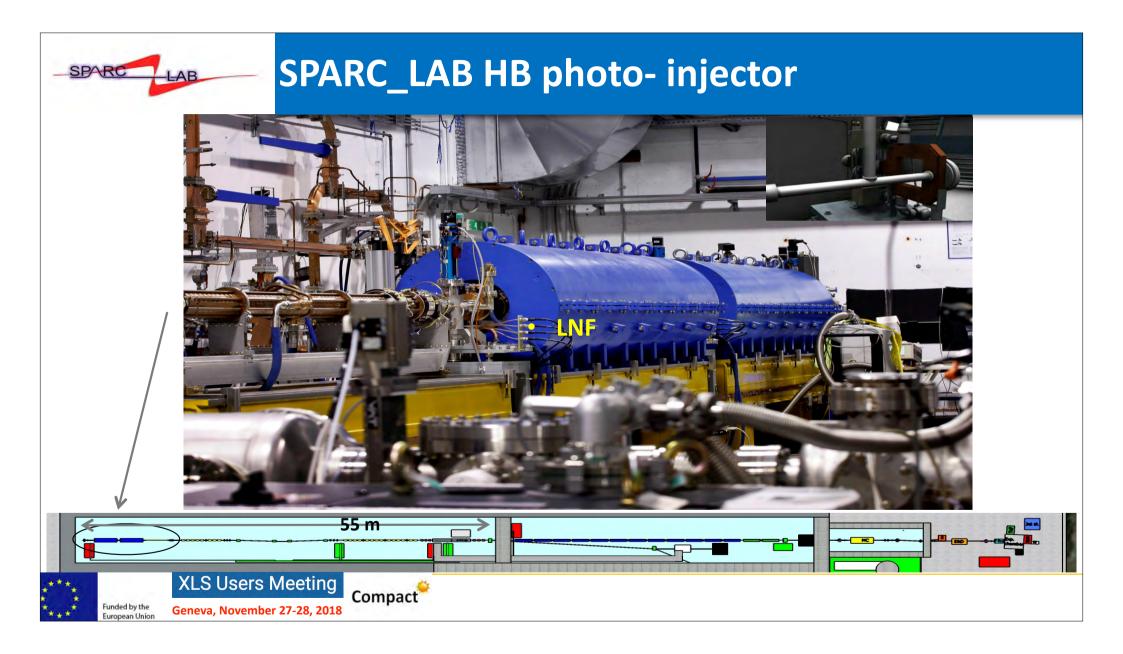
^o Universitá degli Studi di Milano and INFN, Via Celoria 16, 20133 Milan, Italy

^p Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA


⁹ Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

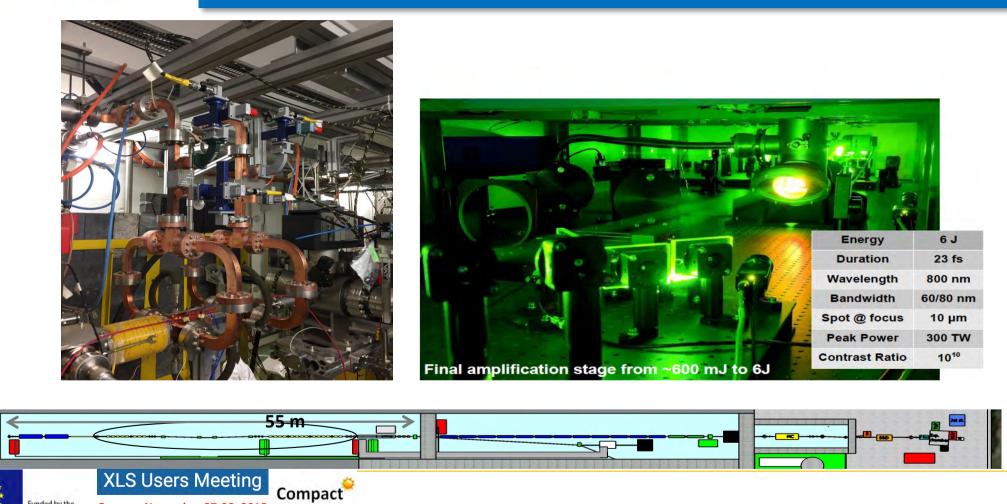
Funded by the European Union

- LNF candidate to host EuPRAXIA (1-5 GeV)
- FEL user facility (1 GeV 3 nm)
- Advanced Accelerator Test facility (LC) + CERN

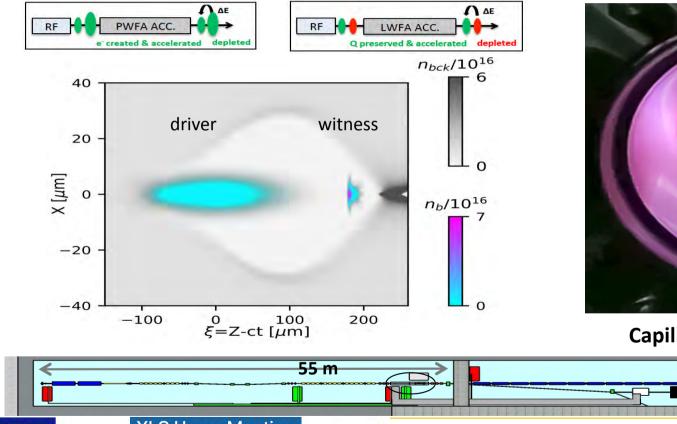


- 500 MeV by RF Linac + 500 MeV by Plasma (LWFA or PWFA)
- 1 GeV by X-band RF Linac only
- Final goal: a compact 5 GeV accelerator

XLS Users Meeting

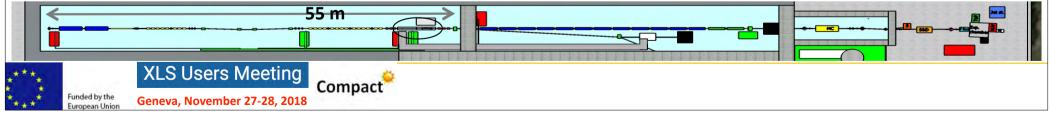


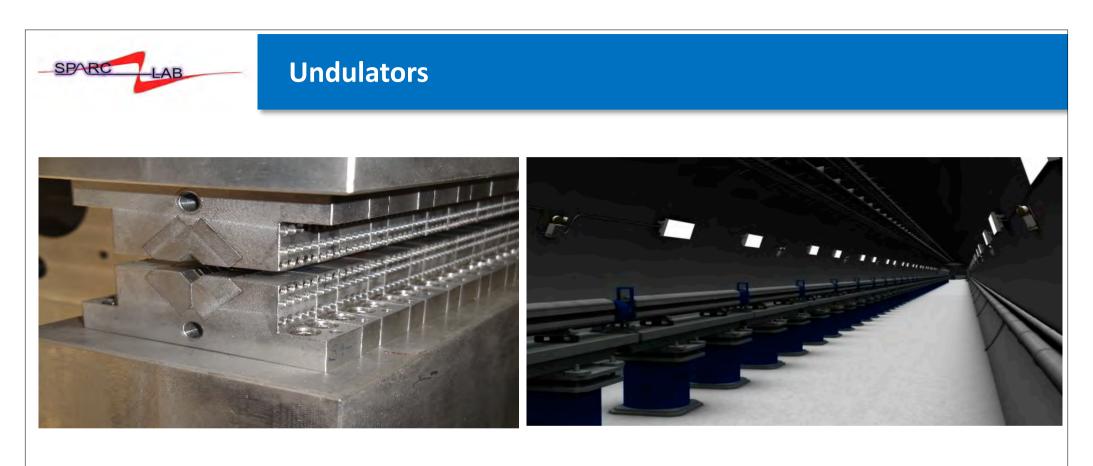
Funded by the


European Union

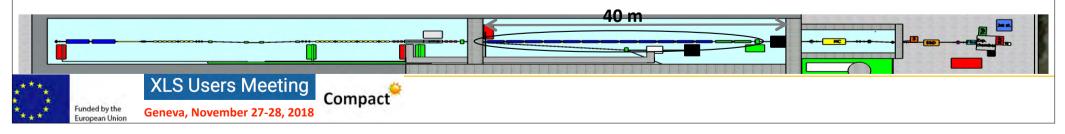
Geneva, November 27-28, 2018

X-band Linac and High Power Laser


Plasma WakeField Acceleration – External Injection

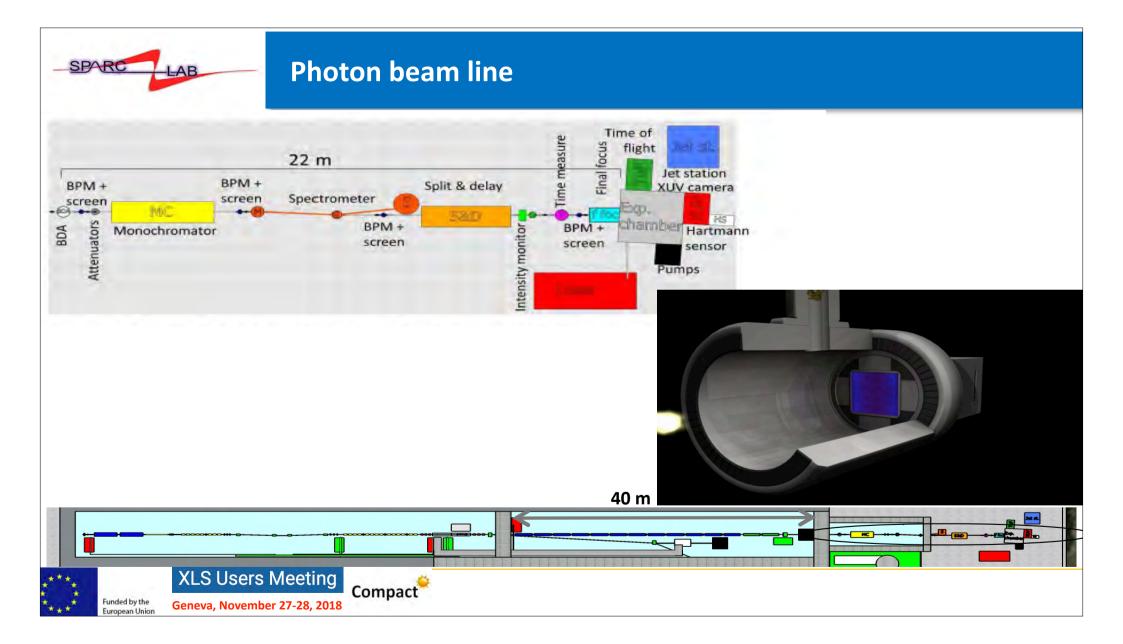


SPARC



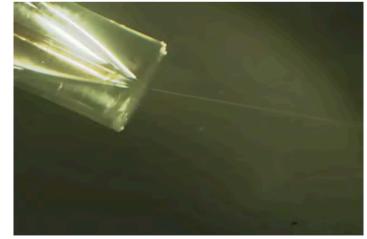
Capillary discharge at SPARC_LAB

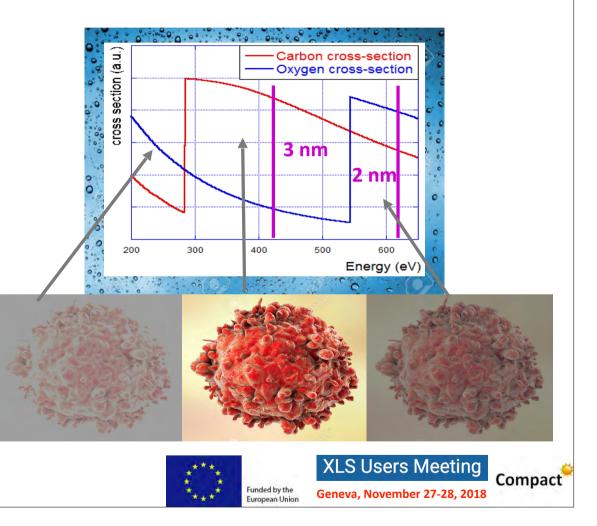
KYMA Δ udulator at SPARC_LAB: λ =1.4 cm, K1



	Units	Full RF case	Plasma case
Electron Energy	GeV	1	1
Bunch Charge	pC	200	30
Peak Current	kA	2	3
RMS Energy Spread	%	0.1	1
RMS Bunch Length	fs	40	4
RMS matched Bunch Spot	μm	34	34
RMS norm. Emittance	μm	1	1
Slice length	μm	0.5	0.45
Slice Energy Spread	%	0.01	0.1
Slice norm. Emittance	μm	0.5	0.5
Undulator Period	mm	15	15
Undulator Strength K		1.03	1.03
Undulator Length	m	12	14
Gain Length	m	0.46	0.5
Pierce Parameterp	x 10 ⁻³	1.5	1.4
Radiation Wavelength	nm	3	3
Undulator matching β_u	m	4.5	4.5
Saturation Active Length	m	10	11
Saturation Power	GW	4	5.89
Energy per pulse	μJ	83.8	11.7
Photons per pulse	x 10 ¹¹	11	1.5

XLS Users Meeting Compact Geneva, November 27-28, 2018




Water Window Coherent Imaging

Energy region between oxygen and carbon K-edge 2.34 nm – 4.4 nm (530 eV - 280 eV)

Water is almost transparent to radiation in this range while nitrogen and carbon are absorbing (and scattering). Coherent Imaging of biological samples living in their native state.

Possibility to study dynamics

R&D perspectives

- X-band RF technology implementation → CompactLight => CERN collaboration
- Science with short wavelength Free Electron Laser (FEL)
- Physics with high power lasers and secondary particle source
- R&D on compact radiation sources for medical applications
- Detector development and test for X-ray FEL and HEP
- Science with THz radiation sources
- Nuclear photonics with γ-rays Compton sources
- R&D on polarised positron sources
- R&D in accelerator physics and industrial spin off

The scientific case

one beamline, one class of experiments

Coherent Imaging Experiments

Biological samples (cells, viruses), nanomaterials, sooth, ashes Seibert *et al* Nature (2011) Single mimivirus particles intercepted and imaged with an X-ray laser.

Starodub *et al* Nature Communications (2012) Single-particle structure determination by correlations of snapshot X-ray diffraction patterns.

Hantke *et al* Nature Photonics (2014) High-throughput imaging of heterogeneous cell organelles with an X-ray laser.

Van Der Schot *et al* Nature Communications (2014) Imaging single cells in a beam of live cyanobacteria with an X-ray laser.

Ekeberg *et al* Physical Review Letters (2015) Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser.

Reddy *et al* Scientific Data (2017) Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source.

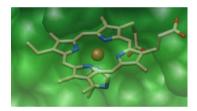
Huang *et al* Nanoscale (2018) Free-Electron-Laser Coherent Diffraction Images Individual Drug-Carrying Liposome Particles in Solution

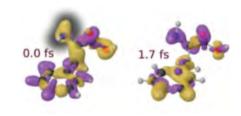
The (extended) scientific case Soft- and hard-matter science with a soft X-ray/EUV FEL

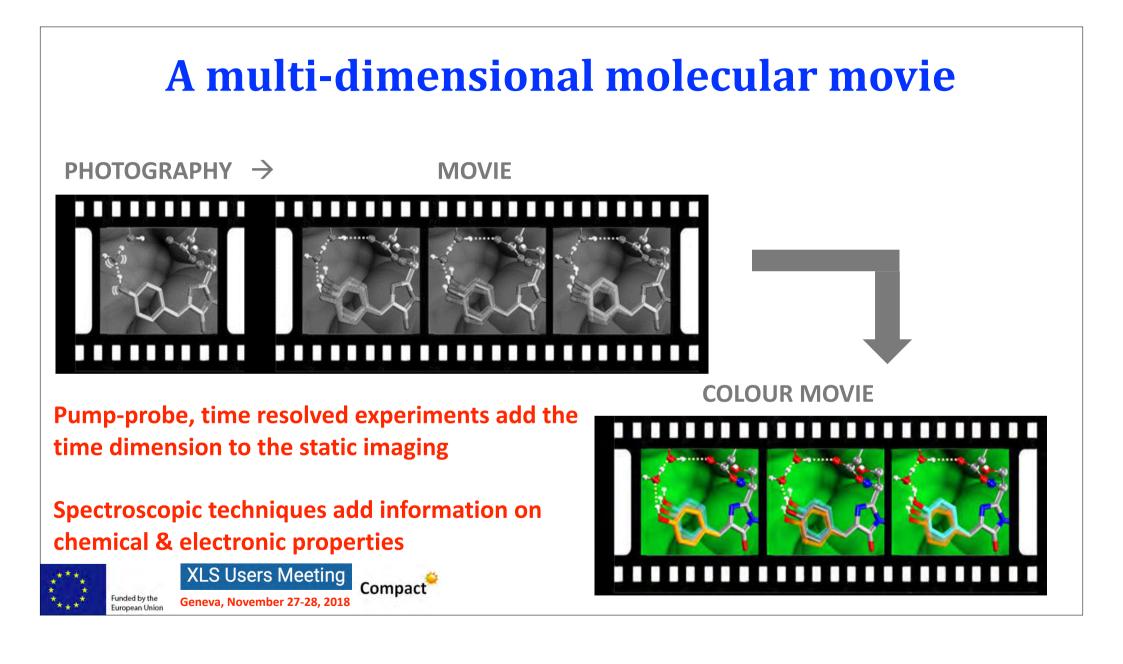
Coherent Imaging Experiments Biological samples (cells, viruses), nanomaterials

X-ray Absorption & Emission Experiments Metal compounds, semiconductors, biomolecules

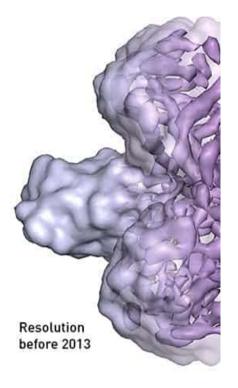

X-ray Raman experiments Biological molecules

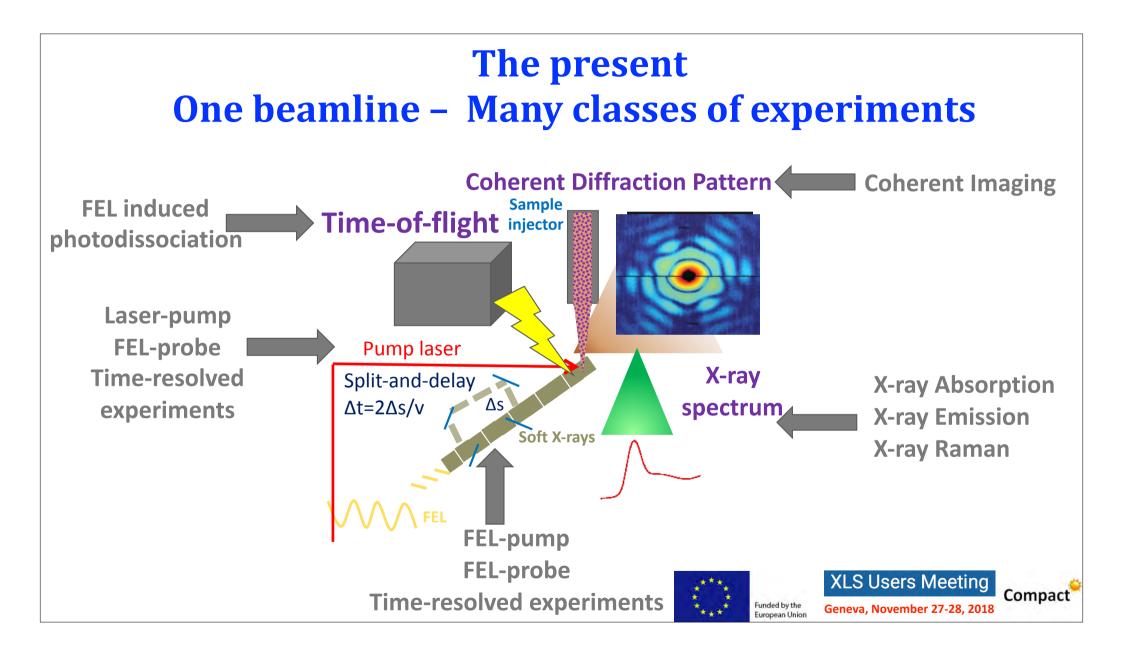

FEL induced photofragmentation experiments Organic molecules


+ THz applications

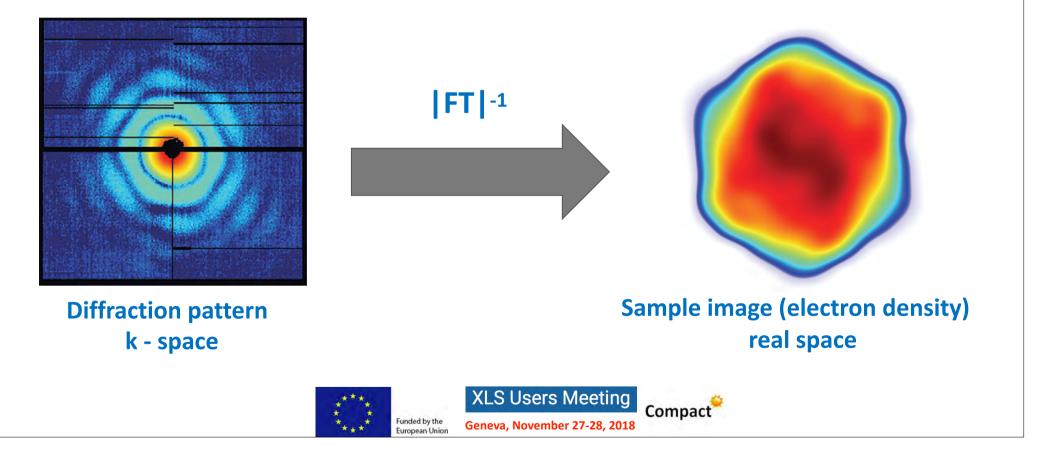


XLS Users Meeting Geneva, November 27-28, 2018





Nobel in Chemistry 2018



Jacques Dubochet, Joachim Frank and Richard Henderson received the prize for their part in developing cryoelectron microscopy (cryo-EM), a technique that fires beams of electrons at proteins that have been frozen in solution, to deduce the biomolecules' structure even in systems not suitable for X-ray crystallography.

Coherent imaging

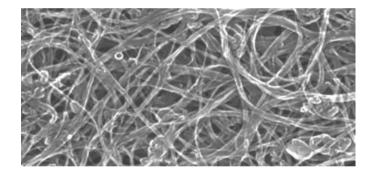
When the FEL photons hit the sample, a **diffraction pattern** is originated **The diffraction pattern is the |FT| of the sample electron density**

Coherent Imaging - Biosamples

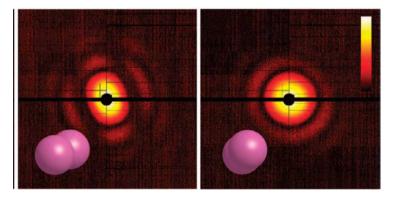
2D images can be obtained from a single shot Cells, cell organelles (e.g. nuclei, mitochondria, ribosomes) viruses, protein aggregates

3D images can be obtained by merging info from several shots Since the sample is destroyed by the interaction with FEL photons, many identical samples are needed

Viruses, protein fibrils, single protein molecules...



Van der Shoot, ..., FS, et al., Nature Comm (2015) Van der Shoot, ..., FS, et al., Sci Data (2016) Ekeberg et al., PRL (2015)


Coherent Imaging - Materials

Nanomaterials

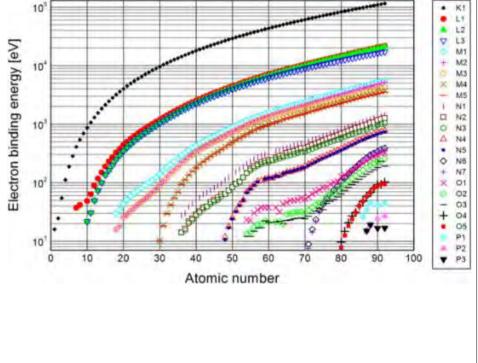
Especially those significantly scattering in the EuPRAXIA@SPARCLAB energy range

Nanotubes Nanoparticles Soot (engines emissions) Volcanic ashes

Statodub et al., Nature comm (2012)

Technology development: photovoltaic, H storage Biomedical applications: functionalized, bio-compatible materials

High time resolution pump-probe studies



X-ray Absorption & Emission

Transition metal L- and M-edge spectroscopy: ideal method to obtain detailed information on the electronic structure of a metal center.

Due to the large absorption cross sections at soft X-ray energies, the damage threshold is much lower than at hard X-ray energies and it is practically impossible to collect undamaged Mand L-edge spectra from diluted metal complexes in aqueous solution under ambient condition at SR sources.

FEL «scatter & destroy» experiments can overcome the radiation damage problemA. Balerna & Co. A. Di Cicco & Co.@ LNF @ Camerino

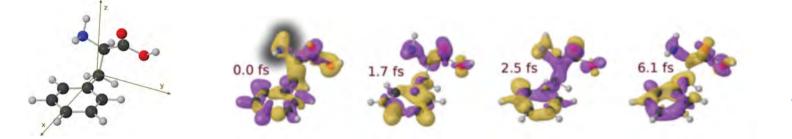


Photo-fragmentation of molecules

SCIENTIFIC GOAL

Photo-protection or photo-damage of biomolecules

FEL (or laser) pulse can be used to break molecules in controlled ways Time-resolved, time-of-flight fragment abundance allow getting dynamic information on the excited states of the molecules and *viceversa*

Phenylalanine electron dynamics Science **346**, 336 (2014)

RELEVANCE Photo-protection or photo-damage of biomolecules Potential relevance in diagnostic, radiotherapy etc

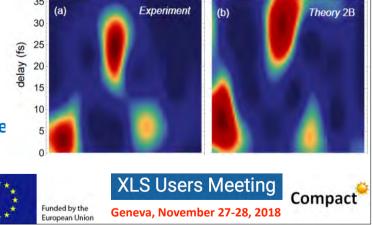
Ultrafast electron dynamics in biological molecules initiated by a core ionisation

STATE OF THE ART

Photofragmentation chronoscopy

to study valence motion initiated by valence-shell ionisation due to a XUV pulse - *Science 346, 336 (2014)*

Transient photoabsorption spectroscopy


to study valence motion initiated by valence-shell ionisation due to a NIR pulse - • Nature 466, 739 (2010)

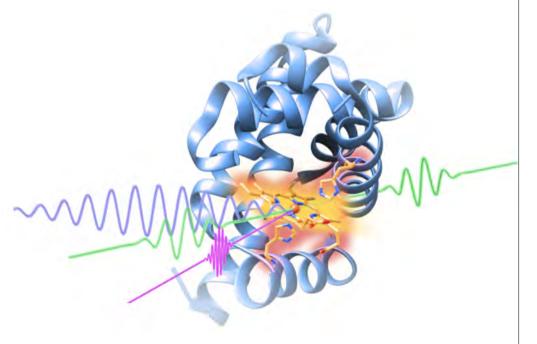
Coherent Imaging

to directly observe the electron density – PRL (2018????)

A possible way to describe ab initio the core ionisation THEORY @ Tor Vergata (G. Stefanucci, E. Perfetto)

"Charge migration in XUV photoexcited phenylalanine: a first-principles real-time Green's function study", J. Chem. Phys. Lett. 9, 1353 (2018) "Real-time dynamics of Auger wave packets and decays in ultrafast charge migration processes", Phys. Rev. A 97, 061401(R) (2018) Core ionisation (theory & experiments) are still missing !! Imaging is still in its infancy

X-ray Raman + Resonant Inelastic Scattering


X-ray Raman scattering (XRS) is the scattering of X-rays from core electrons. It is analogous to Raman scattering, which is a widely used tool in optical spectroscopy, with the difference being that the wavelengths of the exciting photons fall in the X-ray regime and the corresponding excitations are from deep core electrons.

T. Scopigno & coworkers @ La Sapienza

XRS is an element-specific spectroscopic tool for studying the electronic structure of matter. In particular, it probes the excited-state density of states (DOS) of an atomic species in a sample, including biological ones such as proteins.

J. Sanchez @ Cordoba University

Conclusions

Several experimental techniques A variety of samples Coherent imaging Nanoparticles, cells, viruses, soot X-ray spectroscopies Proteins, metals, semiconductors X-ray Raman, RIXS Proteins, liquids, magnetic materials Photo-fragemntation Organic molecules

We are submitting a manuscript on a special issue of «Condensed Matter» with a description of the scientific case

	FEL scientific case	13
.1	Introduction	13
.2	Scientific case	14
.2.1 .2.2 .2.3	Biological samples	
.2.5	Laser ablation plasma Condensed Matter Science Pump probe, time resolved techniques	15 15 16
.3	FEL techniques	16
.3.1 .3.2	Coherent Imaging of biological samples in the water window	16 16
.3.3 .3.4	Pump and probe non-linear spectroscopy Time-resolved Raman experiments with x-ray pulses	19 19
.3.5 .3.6	Photo-fragmentation of molecules Resonant Inelastic X-Ray Scattering	
.3.7	Perspectives	
.4	The experimental hall and the experimental end-station	26
.4.1		26
.4.2	The experimental hall	
.4.3 .4.4	Instrumentation	

Science with Free Electron Laser

Parameters	Expected values
Radiation wavelength	2.8 nm
Photons per pulse	> 1011
Pulse length (FWHM)	10-50 fs
Repetition rate	10 Hz
Bandwidth (FWHM)	<1 %

Extend the range is always useful, open new spectroscopic possibilities, but for the water window nothing change.
Going to 10¹² - 10¹³ is nice. In principle we can go even to higher flux still destroying the sample, but in this way we have the possibility to increase the S/N.

3) At present this scientific case does not requires shorter PL, but photo-fragmentation experiments may exploit shorter PL with benefit.

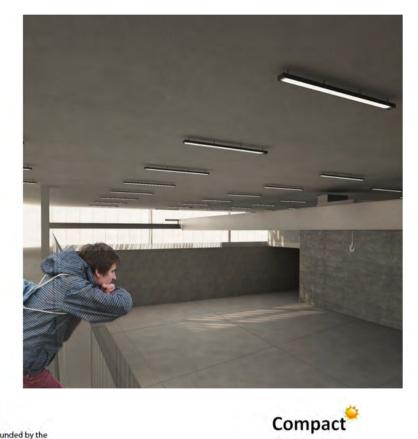
4) Repetition – higher for sure. Continuous ? Detectors are not able to sustain rates > kHz.

5) For spectroscopy this is ok. Improve a factor 3-4 will be certainly useful for many experiments.

6) Variable polarization (linear & circular).

All parameters can be improved taking care the stability of the photon beam in term of spatial position and energy. Spatial stability is a difficult issue to measure: we may propose few % at the exit of the undulators.

Brilliance (photons/mm²/mrad²/0.1% bw)

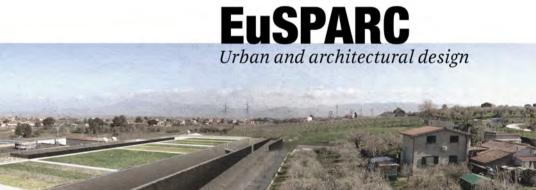


Outside and inside rendering

Funded by the European Union

Experimental hall

Funded by the European Union


Compact

University of Sassari Departiment of Architecture, Design and Urban planning_DADU

Team

Prof. Arch. Massimo Faiferri faiferri@uniss.it Arch. Samanta Bartocci sbartocci@uniss.it Arch. Fabrizio Pusceddu fapusceddu@uniss.it Arch. Rosa Manca mancarosa@yahoo.it

A. Balerna	J.J. Leani				Funded by the European Union	XLS Users N Geneva, November		Compact
G. Batignani E. Chiadroni D. Cirrincione F. Cometto M. Coreno A. Cricenti	S. Lupi C. Masciovecchi A. Marcelli A. Minicucci S. Morante E. Perfetto	-	& Ins	stitutions	CNR - Istit Istituto I Is	tuto Struttura d Elettra - Sincro Nazionale di Fis tituto Italiano d	lella Mat trone Tri ica Nucle li Tecnol	este eare ogia
S. Dabagov E. De Santis A. Di Cicco	S.J. Rezvani A. Ricci J. Robledo		34 res	Argentinian Sci earchers	R		IASS - Ro za Univer	ome rsity
C. Ferrante G. Fumero L. Giannessi R. Gunnella	M. Rubio H.J. Sanchez V. Sbarato T. Scopigno	F. Stellato A. Trapananti A. Vacchi		12 institutions	ľ	Camerin Cordob Udir	io Univer Da Univer De Univer Ca Univer	rsity rsity rsity
A. Irizawa	G. Stefanucci	F. Villa	INFN ionale di Fisica Nucleare		1	t <	2	/
CONIC	ET	5117 ×	a lio Nazionale le Ricerche			APIENZA IIVERSITÀ DI ROMA	Sincrotrone Tr	