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« FELs provide a unique way to controllably create high energy density systems and probe specific
properties in isolation.

- By HEDS we mean warm/hot dense matter (plasmas), akin to stellar interiors. These can be
created by intense x-ray FEL radiation (x-ray only experiments).

- OR
« we mean highly compressed solids (or again plasmas) generated by optical lasers:

« > 100 J nanosecond lasers can produce solid state matter at TPa pressures (exoplanet
interiors) by ramp compression along an isentrope, and dense plasmas by shock
compression.

« The community is also interested in using few 100 TW (ideally PW) short pulse lasers to
produce even hotter conditions.

 For the experiments involving optical lasers your system is only as good as the worst of the
optical/x-ray laser - so you must consider the expense of optical drivers. Some science can be
performed with ‘cheap’ (few Million) commercial systems, but in any event the optical aspect
should be designed in from the start.
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Creating well-controlled HED states is extremely challenging

OXFORD
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Figure: R.W. Lee et al., J. Opt. Soc. America B 20, 770 (2003).
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First experiments at LCLS show dominance of multi-photon ionization s

First experiments on Ne at LCLS in 2009 show sequential multi-photon ionization can
strip Ne atoms of all their electrons on fs timescales
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Young et al., Nature 466, 56—61 (2010).
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X-ray spectroscopy shows that hot dense plasmas can be created
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isochorically at solid density s
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FELs can isochorically create high energy density plasmas
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Measurements of electronic structure of Mg plasmas
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We can map how the plasma environment affects atomic physics via x-ray spectroscopy
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lonization potential depression depends on the local density
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Ciricosta et al., Nat. Commun. 7, 11713 (2016)

28th November 2018 sam.vinko@physics.ox.ac.uk 8



XFELs can clock sub-femtosecond electron collisional dynamics
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* How quickly does do electrons collisionally ionize in hot-dense plasmas?
* What are the timescales for electron ‘damage’ in dense systems?
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Vinko et al., Nature Commun. 6, 6397 (2015)
van den Berg et al., PRL 120, 055002 (2018)
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Radiation absorption by stellar matter controls the internal
temperature profiles within stars
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Solar models using elemental abundances from photosphere spectral analysis disagree
with helioseismic observations.
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Summary of ‘x-ray only’ wish-list
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- FELs provide a unique way to controllably create high energy density systems
and probe specific properties in isolation. But we need:

* high pulse energies - several mJ (single-shot experiments required, stability);

 broad range of photon energies; capability to pump in soft x-ray regime (1-2
keV) and probing at hard x-rays (~ 8 keV) would be fantastic;

« pump-probe time delays between 1-2 fs to 100’s of ps (explore collisional
physics);

- short pulses (< 10 fs, < 1fs) with high energy (>2 mJ);

« resonant processes & scattering techniques would benefit from much smaller
bandwidths (<10-4), but without sacrificing too many photons.

 High repetition rate & 2D detectors with single-photon counting capability
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Matter in extreme conditions
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Hydrogen Phase Diagram
I

Aluminium Phase Diagram
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Figure: R.W. Lee et al., J. Opt. Soc. America B 20, 770 (2003).
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Warm Dense Matter (WDM) occurs widely in nature
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Planetary Physics

http://exoplanets.org
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Laser Ablation

« Laser irradiates an ablator and launches shock
* VISAR measures the velocities of particles, shock and
standard from a stepped sample

VISAR measures
velocity and reflectance

ablator

Laser e NNN

o Us(slandard)

Conservation relations => P =p, U U,

plpe = 1/(1-U,/U,)

*Temperature needs to be measured separately

Nanosecond lasers can easily induce multi-TPa (1TPa=10Mbar)
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(P Experimental Set-Up - CXI
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Despite being a very complex
structure, under pressure
several simple elements take
this form - e.g. potassium. Even
aluminium is predicted to form a
host-guest structure at 30 Mbar

* |n a host-guest structure it is as though, for a single element, we have a ‘normal’
crystal structure (the host), and down one axis ‘well-holes’ have been drilled
periodically, and a 1-D string of atoms (the guest) runs down those holes.
Amazingly, the spacing of the guests is totally incommensurate with the spacing of

the host.
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Scandium Diffraction
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R. Briggs et al, Phys. Rev. Lett., 025501 (2017)




Scandium Diffraction
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Results
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Summary of ’'ns laser-driver’ wish-list

OXFORD

« One would ideally need a high repetition rate >100J nsec optical laser alongside the FEL.
Overall facility is only as good as the optical laser. Note DIPOLE is a ~£10M system.

- Some good physics can still be done with smaller, commercial, optical lasers, but the
scope will be limited.

- Key diagnostic is diffraction. 8 keV is good, but the high energy the better (in general) -
e.g. the >20 keV of XFEL.

- Energy per pulse sufficient for single shot diffraction (fraction of mJ).

- Useful to have narrow bandwidth (<10-6) monochromated beam for inelastic scattering
from phonons (temperature measurement). With current bandwidths and then
monochromatic (throwing away photons), single shot temperature measurements will be
challenging. Thus seeding (or other ways of getting more energy per bandwidth) is useful.

- Have not had time to discuss short (<1ps) optical physics. LCLS/XFEL will have a few
hundred TW systems - again expensive, but again a few TW system is <1M.
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Some overall thoughts
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My understanding is that the project is offering technology to others who may wish to build a compact FEL,
but will not be building a FEL itself.

My view would be that /F such a system really is much cheaper than a ‘standard’ warm FEL, then someone
will wish to build it, and there is no need to agonise over whether this is a University or a national lab.

However, if building such a standard (few mdJ, 100-fsec, 0.5 - 10 or 20 keV) FEL at low cost is your USP,
you really need to know what that cost is.

It is far from clear how costs scale with length. True costs can be better estimated by current FEL
providers - to what extent are they involved, and a ‘technology provider’ is not necessarily best placed to
make total cost estimates.

The other question to consider is does the technology provide any other truly unique USP? (This would be
nice, but in my view not essential).

In the presentation yesterday it was stated “the funding success rate is 10-15% for EU grants and probably
the same for national grants. The success rate for beam time applications doesn’t need to be much higher.
Hence, the argument that we don’t have enough FEL beam time is weak’. This is NOT a logical statement.
There is not a one-to-one correspondence between the success rate of grants, and the concomitant
requirements for beam-time (It could well be that the number of successful grants is such that the required
FEL time is greatly exceeded - or indeed the reverse).
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