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1. What is attoscience?
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In most matter electrons are in close proximity to
one another and so both classical and quantum
correlation will play a vital role in the electron dynamics

Attosecond Science = study and ultimately control of
attosecond time-scale electron dynamics in matter.

These dynamics determine how physical and chemical
changes occur at a fundamental level.



1. Attosecond science is not only about the electrons:
Example of dephasing/damping of electronic coherence in charge migration
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Rapid nuclear motion —can change evolution of
amplitudes in a few fs
see Vacher et al J Chem Phys, 139, 044110 (2013)
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In general we must anticipate correlated electronic-nuclear state
evolution with ultrafast vibronic coupling and non-adiabatic 118, 033001
dynamics as well as strong traces of decoherence/dephasing at
these early timescales
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1. Electronic motion in a molecule

excitation charge migratio(n
. . a)

Calculated electron dynamics in a dipeptide Electron Orbit in Bohr Model

T,.vit = 150 as for H ground state

In a chemical reaction or physical change electronic, vibrational & rotational dynamics can
occur in a highly correlated fashion on timescales from 0.01 — 1000 fs



1. Some important problems at ultrafast timescales

* Optimising artificial light harvesting systems (1 fs — 1 ns)

* Electronic events in photo-physics and chemistry

e Controlling chemistry and physics with laser fields (0.1 fs — 100 ps)

- Lightwave electronics (0.01-1 fs)

- Controlling materials (e.g. superconductivity) with light (1fs — 100ps)

* Understanding radiation damage in biomolecules (0.1fs — 1ps)

We must measure across a wide range of timescales from nanoseconds (1 ns = 10°s)
picosecond (1 ps =10-12s) > femtoseconds (1 fs =10-15s) —> attoseconds (1 as =10-18s)

The fastest timescales are only now be accessed by ultrafast measurement technology



2. Approaching Few- to Sub-Femtosecond Time Resolution

Imaging isomerization acetylene — vinyldiene using particle coincidences
with 10 fs resolution at LCLS AMO end station using X-ray split and delay

C.E.Liekhus-Schmaltz et al Nature Communications, 6, 8199 (2015)
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2. Probing valence hole dynamics
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Fioure 2: Pump step opens a number of valence ionisation channels including creation of inner valence holes (IVH). The delaved probe
S & e

pulse can strongly interact via a O 1s—IVH transition (a channel only open if inner valence ionisation has occurred). Following this

there can be Auger decay back to the O 1s hole with the emission of Auger electrons of characteristic energy that can be detected.

ART'CLES NATURE PHOTONICS Dboi: 10.1038/NPHOTON.2016.201
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Figure 1 | Fresh-slice multipulse scheme. The electron bunch travels off-axis in the dechirper experiencing a strong transverse head-tail kick, represented by
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2. Possible signhature of valence hole dynamics
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3. Euro XFEL and LCLS II
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3. Attosecond X-ray Pulses
HXR: Isolated 200 as pulse produced .

eV eV ‘
) Y e
= A 3 y
\ 2 %K & T 8 0 -30 -20 -10 0 10 20 30
Number of spikes AE (eV)
< Z

Huang et al, PRL 119, 154801 (2017)
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Measurements:
Nonlinear compression produces SO g D \51(‘1‘5‘?39;’\,'3;‘@)
High density head with low density tall 10 uJ x-ray pulse from 20 pC bunch
Huang et al, PRL, 119, 154801 (2017) Slotted foil results (400 as pulse): APL 111, 151101 (2017)
XLEAP - soft X-ray tests underway
XLEAP Soft X-ray scheme now operating reliably.

1%t sub-fs resolved circular field streaking
measurements conducted in the last weeks

X-RAY PULSE




3. Attosecond pulses enable X-ray non-linear spectroscopy :
Measuring electronic coupling between sites within a molecule
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1.V. Schweigert and S. Mukamel, PRL 99, 163001 (2007)

One of many potential methods that could lead to multi-dimensional time-resolved X-ray
spectroscopy for tracking electronic dynamics within matter



4. X-ray requirements for attosecond science

e Sub- fs pulses (width < 0.5 fs)

e 2-colour (spanning multiple X-ray absorption edges) sub-fs pulses of
variable delay (-100 to +100 fs) with delay accuracy to 0.5 fs

e SXR50eV -1 keV, (eventually to 10 keV for accessibility to wide range of L
and K edges)

e Accurate single-shot pulse diagnostics (pulse energy, photon spectrum,
duration and delay)

* Synchronisation to external lasers (or post-sorting) to < 1 fs (for optical
excitation and coherent control experiments)

* High peak and average flux (10 - 100 wJ pulses, >1 W average)

* High rep-rate (for statistics and to avoid severe sample damage or detector
saturation limits) > 10 kHz

e Small X-ray beam focus (< 1 pum)
* Gas, liquid and solid sample environments operation in vacuuo



