HGCal for VBS

Clemens Lange, Jan Kieseler

Material from CMS-TDR-019
VBSCAN Workshop: New techniques in particle reconstruction for VBS

Krakow, Poland
24.10.2018

HGCal overview

- Novel calorimeter concept
- Endcap calorimeter:
 - radiation hardness
 - cope with pileup (140-200 PU)
- Prioritise position over energy resolution
- 52 layers (sampling calo):
 - 28 electromagnetic
 - 12 front-hadronic
 - 12 back-hadronic (scintillator)

Sensors

- 8 inch hexagonal wafers
- Different cell sizes depending on sensor thickness:
 - 300, 200, 120 μm sensor thickness with 1.18, 1.18, 0.52 cm² cell size

A single layer (here: 9th layer)

Testbeam setup

Particles in the HGCal

Can follow particles through the calorimeter - here: two unconverted photons

Reconstruction

- Start from reconstructed hits, corrected for energy loss in absorbers
- Correct for hadronic energy scale for hadrons
- Perform different clustering steps (to be revisited):
 - Cluster in each layer
 - Build 3D clusters
 - Mega-/Superclusters for single particle hypothesis
- Timing information (ps-level resolution) not promises to be very powerful (not shown here)

Pileup

Profit from longitudinal segmentation to discriminate pileup jets

Revisiting jet size

- Given the granularity of the calorimeter, jet size to be revisited
- Smaller jet size collects less pileup no ρ correction needed (but PU ID)

VBF vs. PU jets

Figure 5.14: Distributions of the two variables used to build the PU jet ID discriminant for both VBF jets (blue histograms), and jets found in pileup (red histograms).

- Iso(1,4) = E(R=0.1)/E(R=0.4)
- E_{10}/E_{iet} = fraction of E in first 10 layers
- Lots of room for optimisation but already powerful

Showers as 3D/4D images

- Current "standard" reconstruction uses sequential clustering
- However, directly clustering hits in 3 or 4 (timing) dimension probably yields better performance
- Computationally more challenging
 - Use GPUs(?)
 - Possible at trigger level?

Build HGCal structure in Neural Network

- 3D imaging problem:CNNs
- Sensors hexagonal
- Sensor size/area changes with layers
- Sensor size/area changes within one layer

Mapping of Sensors to Pixels

- Chose rather coarse pixelisation
 - Here up to 6 sensors per pixel
- Per sensor information
 - Relative eta, phi w.r.t pixel centre, time, energy
- Add per-pixel information
 - eta, phi w.r.t seed
 - layer
- Build pixel "colours" with a small dense, translation invariant network
- (1x1x1 conv)
 - Use full available granularity
 - Only a few more parameters
 - Network can learn metric
- Very similar to DeepFlavour

Charged Pion Energy Reconstruction

- Trained with flat energy between 10-500 GeV, 0 and 200PU, e,pi+,gamma,muons
- Based on 3D convolutional
 NN
- Quite good hadron reconstruction even with 200PU
- DNN performs better

Calorimeter based particle ID (DNN)

Figure 10.3: Efficiency for the discrimination of a muon from a charged pion (left) and for the discrimination between an electromagnetic shower from an electron or photon and showers from charged pions (right).

Conclusion & outlook

- HGCal novel calorimeter concept for the HL-LHC phase 2 upgrade (at this scale)
- Crucial for VBS
- Requires new approaches to reconstruction
- Real potential will be way beyond of what we have just shown

