Pileup Suppression Techniques: Looking to the Future

Jennifer Roloff October 24, 2018

Pileup: Back to Basics

- Multiple collisions per bunch interaction at the LHC allows us to take huge amounts of data
 - These soft collisions contaminate events with hard collisions
 - Extra radiation included inside jets → worse resolution for all jet observables
 - More reconstructed objects → extra pileup jets in the event
- Characteristics of Pileup
 - Fairly soft collisions → low p_T particles
 - On average, fairly uniformly distributed in φ, and some slight dependence on η
 - For a given event, the energy density distribution is approximately Gaussian, with an average ρ, and a spread σ

How do we mitigate pileup?

Detector-level suppression

> • e.g. Noise thresholds, timing information

Constituent-level mitigation

• e.g. CHS, <u>PUPPI</u>, SoftKiller, **Constituent** Subtraction, Voronoi Subtraction, ...

E [MeV]

Jet-level information

 e.g. <u>Jet area subtraction</u>, JVT, fJVT, Pileup Jet ID, jet cleansing

Pileup Mitigation

- What do we want in a pileup mitigation technique?
 - Stability Same parameter choice works for a variety of observables over a wide range of pileup conditions
 - Average correction Correction should produce the same result as zero pileup conditions on average
 - Resolution Technique should result in as little worsening of resolution as possible
 - Simplicity Easy to optimize parameter choices
- To understand the future of pileup mitigation, we need to understand why current techniques work
 - Have both event-level and local observables which can improve

Event-Level Observables

Detector Level

- Both ATLAS and CMS will be upgraded with timing detectors
 - Will cover different η regions
- Can help deal with vertex merging without requiring better vertex ID
- See <u>yesterday's talk by</u>
 <u>Andrea</u> for more information about this work on CMS

ATLAS HGTD CMS MTD

Object Level

- Event-level information can tell you how much pileup is present
 - NPV, mu, and p are several of the most common observables
- Median energy density p used for a many pileup mitigation schemes
 - The spread of ρ in an event is also of interest, though not often used
- Distribution of constituent properties for the event
- Vertex association for tracks

Jet Level

- Median energy density
 - Jet area subtraction
- Other jets in the event
 - Used by fJVT
- Vertex association of tracks in the jet

Local Observables

Detector Level

Amount of energy deposited

- Used to seed clusters for both ATLAS and CMS
- Helps eliminate low-energy deposits

Nearby activity in the detector

Used to include soft energy

Timing information

 Can be used to eliminate out-of-time pileup

Object Level

Distribution of nearby constituents

- Used by Voronoi subtraction to determine what area to assign to each constituent
- Used by PUPPI to determine a
- Used by Constituent Subtraction to determine ghost association

p_T of constituents

- Used by PUPPI to determine a
- Indirectly used by Constituent Subtraction to determine ghost subtraction

Local energy density

Jet Level

Area of jet

- Used in jet area subtraction
- Jet width
 - Used by fJVT

Jet timing

 Lots of different jet characteristics which can be used to discriminate between HS and PU

A Couple Examples

Case Study: Constituent Subtraction

- Calculate the median energy density p
- Add low-p_T ghosts to the event such that the energy density of ghosts is the same as the median energy density
- Cluster ghosts and constituents together using ΔR matching
 - Only match up to some maximum ΔR
 - Subtract off the ghost p_T from the matched constituent
- Once a constituent has zero p_T, it won't be matched to more ghosts

Constituent Subtraction

Whole event before correction

Whole event after correction

Case Study: Constituent Subtraction

- p changes as a function of rapidity
 - Introduced rapidity dependence in ghost momentum
- p fluctuates across the event
 - This means that we are under-subtracting in regions which fluctuate up
 - Could change radius parameter ΔR_{max}, but this leads to over-subtraction in jets
 - Iterative CS redistributes the remaining p_T to a set of new ghosts
 - Allows for additional subtraction in regions with energy density above p without overly biasing jets

P. Berta @ BOOST2018

Case Study: PUPPI

 PUPPI uses a local variable α to signify how HS- or PUlike a constituent is

$$\alpha_i = \log \sum_{j \in \text{event}} \xi_{ij} \times \Theta(R_{\min} \le \Delta R_{ij} \le R_0)$$

where
$$\xi_{ij} = \frac{p_{Tj}}{\Delta R_{ij}}$$

- Quantifies at how close it is to hard PU or HS activity
- Uses the distribution of α for charged PU in that event to determine the weighting for the neutral constituents in the event
- Apply an NPV-dependent p_T cut to the constituents
 - Different treatment needed in regions with or without tracking
 - In total, have somewhere around 6+ parameters to optimize

Case Study: PUPPI

- PUPPI has lots of tunable parameters
 - Can use SoftKiller instead to determine p_T cut → cuts down parameters significantly
- Many other possible improvements to the a metric as well
 - Currently only considers relationship to HS constituents
 - Why not also include information about PU vertices?
 - Could also incorporate other pileup information into the metric

Bringing it all together: Machine Learning

- Machine learning techniques can help tie all of these ideas together
 - Need to give relevant information to deep learning algorithms in order to make use of them
- Challenges: what is the best way to use all relevant information?

PUMML

Case Study: PUMML

- PUMML: PileUp Mitigation with Machine Learning
 - Uses a convolutional neural network with a jet image to determine what to subtract
- Jet images indirectly contain information about several pileup-related observables
 - Encodes charged HS, charged PU, and neutral activity separately
 - p_T of constituents → can eliminate low p_T
 pileup constituents
 - Density of constituents → can reduce noncollinear emissions
- Still more information that could be included
 - Event-level information

Summary

- ATLAS and CMS are both using a variety of techniques to deal with pileup
- Current techniques can be improved in a few different ways
 - Encoding information differently what are the best, most concise ways of representing the information we have?
 - Including more pileup-sensitive observables in current algorithms
 - Creating new observables which are sensitive to pileup
- Machine learning can help bring together information from a variety of sources
 - Still a variety of things to understand about how to do this best
 - How do we best represent our jets and events?

Backup

Pileup Mitigation: SoftKiller

- Determines an event-by-event p_T cut for constituents
 - Should apply either Voronoi Subtraction or Constituent Subtraction first
- Makes a grid, finds p_T cut where half of grid cells are empty afterwards
 - Makes the median energy density approximately zero

Voronoi Subtraction

- Voronoi subtraction is a type of constituent-level pileup mitigation which uses the median energy density (rho) and the Voronoi area to reweight constituents
 - Voronoi area is the area of points in η-φ space which are closer to a constituent than any other
- Voronoi subtraction will leave some constituents with negative pT use
 Voronoi suppression, which discards any constituents with negative pT

Pileup Mitigation: Constituent Subtraction

- Constituent-level pileup mitigation technique which rescales the constituent 4momentum
- Adds ghosts evenly throughout an event with p_T density equal to the median energy density ρ
- Ghosts matched to constituents, and the ghost p_T is subtracted off
 - Only matched within some maximum ΔR of the constituent
- After subtraction, the median energy density should be approximately zero

Whole event before correction

Whole event after correction

Constituent Subtraction Paper
CONF note on pileup mitigation