

RICH news

- RADIATOR GAS ACTIVITY
- NEW PHOTON DETECTORS

- So far: C_4F_{10} from 3M
 - 3M has stopped production (known)
- The 2017 problem:
 - Last batch from 3M: bad = unknown contaminants, not removable with the cleaning procedure
 - RICH operated with a mixture of C₄F₁₀ & N₂
- Moreover, the monochromator system (transparency measurements in UV) failed in Summer 2017
 - Now FIXED: work in last Winter shutdown
- Way-out baseline as in September 2017:
 - New radiator gas : C₄F₈O → new gas system
 - C₄F₈O studied for BTEV, ALICE RICH upgrade
 - C₄F₈O physical (included optical) properties ~ C₄F₁₀

THE EFFECT in RUN 2017

- Indicative figures to appreciate the size of the effect
 - From the data analysis exact figures we will extract exact figures

STATUS in MAY 2018

MONOCHROMATOR SYSTEM

- New PMTs with new wavelength-shifter coating
- Optical components cleaned
- Electronics refurbished, some new components
- → Now properly working

Understanding the BAD gas

- High-tech gaschromatography
- → The presence of extra polluting components, not detected before, in the last 3M batch is <u>confirmed</u>

MARKET SURVEYING

MARKED SURVEYING with target C₄F₈O and C₄F₁₀

- 3M (US) confirmed no production of C₄F₁₀ or C₄F₈O
- Airgas (US, now property of Air Liquide): no offer
- SynQuestLab Inc. (GB): no offer
 - they provided C₄F₈O to ALICE
- F2 Chemicals (UK) can provide C₄F₁₀ also in large amounts
 - at a cost ~ double the previous 3M one
- → We purchased 2 samples from 2 different production batches (20 kg each) from F2 Chemicals
 - For initial studies and characterization
- → After marked surveying, **change of the baseline option**:
 - C₄F₁₀ with present gas system requiring extraordinary maintechnice
 - To be confirmed after studying the small-size samples

INFN
Istituto Nazionale
di Fisica Nucleare

F2 CHEMICALS SAMPLES

through 1,87 m, corresponding to: H₂O: ~1 ppm,

wavelength (nm)

O₂, ~3 ppm

typical

quartz 160

PSN: Liquiefied Gas n.o.s.

UN3163

NEVER SO PURE!

BEST FROM THE PAST →

Contains: Class 2.2 Non-fl: CAS:355-25-0

Drum No: 059574

Batch No: TD-07A

Csl QE

F2 CHEMICALS SAMPLES

Gas Chromatography @ CERN

Peak	Bouteille 1	Bouteille 2
1 (C2F6?)	nd	0.000
2 (C3F8)	0.025	0.045
3 (C3F6)	0.011	0.001
4 (C4F10)	99.964	99.954

C3F6 (double liaison)

COMPASS TB, 3/9/2018

60000-40000-

12.00

14.00

RICH ne

Comparison "bad gas" - Sample 1:

No sulfur components identified In F2 Chemical gas!

CONCLUDING ABOUT THE GAS

C4F10 from F2 Chemicals is fine

 Premature to estimate the rate of the cleaning losses

- RADIATOR GAS ACTIVITY
- NEW PHOTON DETECTORS

STATUS OF THE NEW PHOTON DETECTORS

DETECTOR ELECTRICAL STABILITY:

- Active Surface: 95% electrically fully stable
 - thanks to HV segment studies and related implementation
 - instabilities related to THGEMs
- RESITIVE MM by discrete elements (original architecture)
 - Extremely stable at gains > 200 (MM layer only)
 - All current sparks induced by THGEM sparks
- OVERALL HYBRID DETECTOR PERFORMANCE
 - Gain: ~15 k
 - Spark rate < 1/h in all the 4 detectors
 - Spark recovery time ~ 10 s
- NOISE FIGURES:
 - <σ> ~ 900 e- in all the 4 detectors

UPDATE about NOISE STUDIES

NOISE FIGURES:

- $<\sigma> \sim 800$ e- in all the 4 detectors
- very stable in time

EVENT DISPLAY

6.76 GeV pion

- 6.36 GeV pion

6.4 GeV pion

more and more details about detector characterization on Wednesday at the analysis meeting

GAIN

GAIN MWPC (for comparison)

GAIN STABILITY VS TIME

GAIN EXTRACTED FROM SINGLE PHOTON AMPLITUDE SPECTRA

global corrections: σ/mean ~ 7%

individual corrections: $\sigma/\text{mean} \sim 4\%$

INFN
Istituto Nazionale
di Fisica Nucleare

RESOLUTION

NUMBER OD PHOTONS/RING

the binomial nature of the distribution

when using "half rings"

NUMBER OF PHOTONS & QE

 $QE_det2 / QE_det4 = 1.10$

 $Nph.s_det2 / Nph.s_det4 = 1.06$

Number of photon VS theta

CONCLUDING ABOUT THE NOVEL PDS

- MPGD-based photon detectors ACCOMPLISH THEIR MISSION
 - From the characterization exercises:
 - stable gain and large gain
 - resolution as expected
 - good number of detected photoelectrons
- Technological achievement for the <u>FIRST TIME</u>:
 - single photon detection is accomplished by MPGDs
 - THGEMs used in an experiment
 - MPGD gain > 10k in an experiment

ABOUT FUTURE

 A fully reliable RICH needed for the 2021 run and the future physics with our spectrometer

THEREFORE →

 We have submitted a request to INFN to complete the photon detector upgrade equipping with hybrid MPGDbased PDs the side part of RICH-1

A FULLY RELIABLE RICH, A MUST FOR THE 2021 RUN

- K-identification for flavor separation in D data (as for the p data)
 - For p data: identified single h and identified h-couples
- Relevance of reinforcing the later RICH domain to have good efficiency at large x_Bj: here the cross-section is small!
- The RICH: a key-ingredient for a large range of COMPASS physics
 - See also the next two slides
- More homogeneous photon-detector system
- Refurbishing the existing detectors is in any case work and costs
- A robust RICH for the future physics program with the spectrometer (spectroscopy, exclusive reactions with polarized target, anti-matter production)

physics with muon beam and PID

completed analyses:

longitudinally polarised targets

flavour separation of helicity distributions – d and p PLB 680 (2009) 217

PLB 693 (2010) 227 (148 cit.)

gluon polarisation from open charm muoproduction PLB 676 (2009) 31

PRD 87 (2013) 052018

"unpolarised" targets

D* and D Meson Production EPJC 72 (2012) 2253

Multiplicities of charged pions (d) PLB 764 (2017) 001

Multiplicities of charged kaons (d) PLB 767 (2017) 133

K- over K+ multiplicity ratio (d) sub PLB

transversely polarised targets

Collins and Sivers asymmetries for pions and kaons – d and p PLB 673 (2009) 127 (292 cit.)

PLB 744 (2015) 250

Dihadron asymmetries with PID – d and p in preparation

Λ polarisation transfer – d and p in preparation

physics with muon beam and PID

ongoing analyses (2016 and 2017 data):

unpolarised p target

Azimuthal asymmetries

P_T distributions

Multiplicities of charged pions and kaons

Exclusive Vector Meson production

future analyses (2021 data):

transversely polarised d target

Collins and Sivers asymmetries

Other single hadron asymmetries

Dihadron asymmetries

∧ polarisation transfer

Exclusive Vector Meson production

COMPLETING THE RICH UPGRDE

NOW

MWPC HYBRID HYBRID MWPC MAPMT **MWPC** MAPMT **MWPC MWPC** MAPMT MAPMT **MWPC MWPC HYBRID HYBRID MWPC** > 2018

RICH W/O CORNERS 1/4

Concerning acceptance,

the most demanding item in COMPASS physics: (SI)DIS

Analysis performed on 2010 data: corner cut at DDD level

Overall loss is 1.2%

Material from A. Bressan

RICH W/O CORNERS 2/4

Data selection

- Very simple Likelihood selection
 - Standard DIS cuts
 - z > 0.1
 - Momentum in the range between 2 GeV/c and 50 GeV/c
 - First selection of the maximum likelihood among the e, mu, pi, K and p (normalized to the background likelihood)
 - Likelihood cuts:

$$\frac{\mathcal{L}_{max}}{\mathcal{L}_{bck}} > 1.2$$

$$\frac{\mathcal{L}_{max}}{\mathcal{L}_{2nd\ max}} > 1.05$$

Results – Effect of RICH with no CORNERS

COMPASS TB, 3/9/2018

Overall loss is 1.2%

 x_{Bj}

Results – Effect of RICH with no SIDES

Overall loss is 5%, but 30% at large x

INFN
Istituto Nazionale