HiLumi LHC: Impact of Bad b_6 in Inner Triplet Magnets

F.F. Van der Veken, M. Giovannozzi
Outline

1. Introduction
2. Large \(b_6\) in All Magnets
3. Large \(b_6\) in All Magnets, With Capped Correctors
4. Large \(b_6\) in One Magnet at a Time
5. Large \(b_6\) in Two Magnets at a Time
Aim

- The body of the MQXF magnets might have a much larger b_6 error than currently given in the error tables, up to -4 units. We want to investigate
 - the impact on DA of a large b_6 error (-4 and -6) in all MQXF magnets simultaneously
 - the impact on DA of a large b_6 error (-4) in one or a few of the MQXF magnets
 - if the strength assignments of the NLC package do not exceed 100% of their design values for the above scenarios
Setup

- In total **124** studies, with on average **4260** jobs each
- 0.5M jobs on a tight time schedule
 \[\Rightarrow \text{calculations on the CERN batch system} \]

Many thanks to A. Mereghetti for the new scripts,

- DA is calculated over:
 - 11 angles
 - 60 random realisations of the machine (‘seeds’)
- HLLHC 1.3 optics, nominal errors (but no MCBXF errors)
 \[\beta^* = 0.15/0.15/0.15/0.15 \text{m}, \quad Q_x = 62.31, \quad Q_y = 60.32 \]
 \[\mu_x^{1\rightarrow5} = 31.379^\circ, \quad \mu_y^{1\rightarrow5} = 30.331^\circ \]
 \[d_{\text{sep}}^{1,5} = 0.75 \text{mm}, \quad \theta_c = 295 \text{ mrad} \]
Setup

Q1: 132.6 T/m
Q2a: 2.1 T 2.5/4.5 T m
Q2b: 5.6 T 35 T m
Q3: 4.5 T 35 T m
D1: 2.65 T 5 T m
D2: 5.6 T 35 T m

F.F. Van der Veken

HiLumi

Bad b6 in IT Magnets
Example DA plot

absolute maximum
(maximum angle over all seeds)

individual seed lines
(average over angles per seed)

average DA
(average over angles and over seeds)

absolute minimum
(minimum angle over all seeds)
Outline

1. Introduction

2. Large b_6 in All Magnets

3. Large b_6 in All Magnets, With Capped Correctors

4. Large b_6 in One Magnet at a Time

5. Large b_6 in Two Magnets at a Time
Dodecapole corrector strength in function of b_6 error of all IT magnets
DA in function of b_6 of all IT magnets (chrom 3, $I_{oct}=0A$)
DA in function of b_6 of all IT magnets (chrom 3, $I_{oct} = 0A$, beam 1)

- Nominal
- $b^I_6 = -4$
- $b^I_6 = -6$
- Mean DA
- Min DA

Averaged over all angles
$\Delta DA = 0.18 \sigma$
$\Delta DA = 0.03 \sigma$
DA in function of b_6 of all IT magnets (chrom 3, $I_{oct} = 0A$, beam 2)

Averaged over all angles
$\Delta DA = 0.27 \sigma$
$\Delta DA = 0.13 \sigma$
DA in function of b_6 of all IT magnets (chrom 15, $I_{oct} = -420\text{A}$)
DA in function of b_6 of all IT magnets (chrom 15, $I_{oct} = -420A$, beam 1)

Averaged over all angles
\[\Delta DA = -0.14 \sigma \]
\[\Delta DA = -0.17 \sigma \]
DA in function of b_5 of all IT magnets (chrom 15, $I_{oct} = -420A$, beam 2)

Averaged over all angles
$\Delta DA = -0.15 \sigma$
$\Delta DA = -0.12 \sigma$
Outline

1. Introduction

2. Large b_6 in All Magnets

3. Large b_6 in All Magnets, With CappedCorrectors

4. Large b_6 in One Magnet at a Time

5. Large b_6 in Two Magnets at a Time
DA in function of b_6 of all IT magnets, capped correctors (chrom 3, $I_{\text{oct}}=0A$)
DA in function of b_y of all IT magnets (chrom 3, $I_{oct} = 0A$, beam 1)

Averaged over all angles
$\Delta DA = 0$, σ
DA in function of b_6 of all IT magnets, capped correctors (chrom 15, $I_{\text{oct}}=-420\text{A}$)
DA in function of b_6 of all IT magnets (chrom 15, $l_{oct} = -420A$, beam 1)

Averaged over all angles
$\Delta DA = -0.01 \sigma$
DA in function of b_6 of all IT magnets (chrom 15, $l_{oct} = -420A$, beam 2)

Averaged over all angles
$\Delta DA = -0.01 \sigma$

- $b_6^T = -6$
- $b_6^T = -6$, cap
- Mean DA
- Min DA
Outline

1. Introduction
2. Large b_6 in All Magnets
3. Large b_6 in All Magnets, With Capped Correctors
4. Large b_6 in One Magnet at a Time
5. Large b_6 in Two Magnets at a Time
Dodecapole corrector strength, setting low b_6 per IT magnet, one-by-one
DA for $b_6 = -4$, one magnet at a time (chrom 15, $I_{\text{oct}}=-420\text{A}$)
Outline

1 Introduction

2 Large b_6 in All Magnets

3 Large b_6 in All Magnets, With Capped Correctors

4 Large b_6 in One Magnet at a Time

5 Large b_6 in Two Magnets at a Time
|-------|----------------|
Dodecapole corrector strength, setting low b_6 for two IT magnets at random

kctx3.l1

kctx3.r1

kctx3.l5

kctx3.r5

RanID (two random IT magnets with $b_6^T = -4$)
Thank you for your attention!