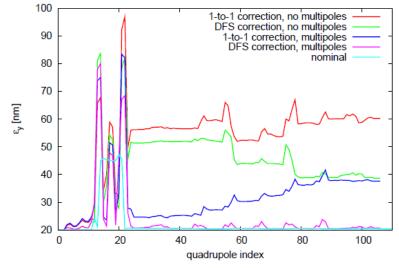
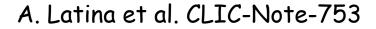
DFS in the BDS

B. Dalena, A. Latina, R. Tomás Beam physics meeting 25/11/2009

Dispersion-Free-Steering in the BDS


test beam 98% nominal energy, ω_1/ω_0 =1e5, σ_{bpm} =0.1 µm, misalignment 10 µm 1e+08 1e+07 1e+06

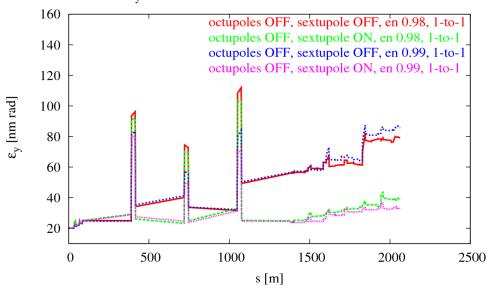
ε_y [nm]

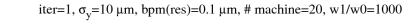

DFS in all the BDS (Collimation + Final Focus section) gives a huge final vertical emittance ...

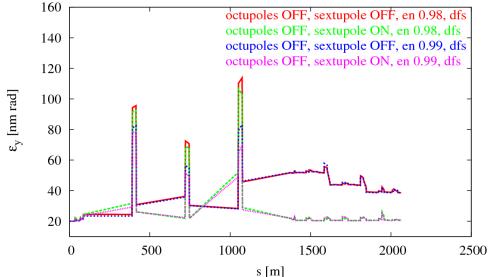
test beam 98% nominal energy, $\omega_1/\omega_0\text{=}1\text{e}5,\,\sigma_{bpm}\text{=}0.1\,\mu\text{m},$ misalignment 10 μm

quadrupole index

DFS in the Collimation section gives a final vertical emittance $\Delta \varepsilon_v = 0.7$ nm

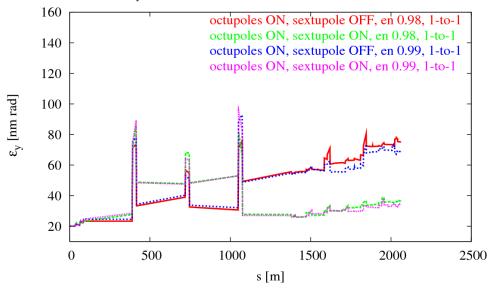



Alignment strategy

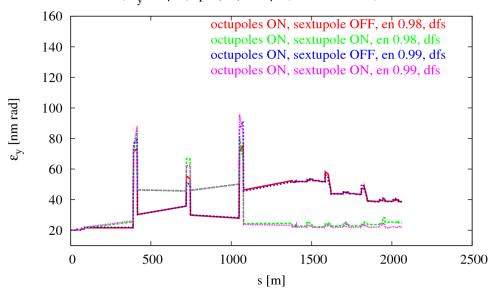

- Compute the linear response matrix R (multipoles off, no SR) for the nominal beam and a test beam R1 with E = $98\% E_0$
- Machine misalignment 10 $\mu\text{m},$ applied to quadrupoles and bpms (except the last one)
- Dipole correctors (+ bpms) added to the lattice (one every quadrupole)
- Turn off the sextupoles
 - 1-to-1 correction (see paragraph 5.5.3 E. Adli PhD thesis)
 - dispersion free steering (see paragraph 5.5.4 E. Adli PhD thesis)
- Turn on the sextupoles
 - 1-to-1 correction
 - dispersion free steering
- \Rightarrow repeat the 4 steps with octupoles on or off

Results with placet-00-95-04 (1/2)

iter=1, $\sigma_v = 10 \ \mu m$, bpm(res)=0.1 μm , # machine=20, w1/w0=1000


- iter : number of time DFS is applied
- # machine : number of machines simulated (results are the average)
- w1/w0=1000 : w1=1000 and w0=1
- en 0.98 : test beam with 98% of nominal beam energy
- en 0.99 : test beam with 99% of nominal beam energy (collimation section accepts beam energy errors < 1.3%)

Final emittance (sextupoles ON):


	en 0.98 Δε _y [nm rad]	en 0.99 ∆ε _y [nm rad]
1-to-1	19.1	13.0
Dfs	0.6	0.6

Results with placet-00-95-04 (2/2)

iter=1, σ_v =10 µm, bpm(res)=0.1 µm, # machine=20, w1/w0=1000

iter=1, $\sigma_v = 10 \ \mu\text{m}$, bpm(res)=0.1 μm , # machine=20, w1/w0=1000

	en 0.98 Δε _γ [nm rad]	en 0.99 ∆ε _y [nm rad]
1-to-1	16.4	14.2
dfs	5.0	1.7

• octupoles ON

Next step

- Apply DFS in the last collimation section lattice
 - w or w/o spoilers ?
 - w apertures

- ?

• Request (for integrated studies): can we fix the matching section between LINAC and BDS (main linac lattice4a or lattice4b?) and use the same lattices in all simulations

=> easier to compare results