Some studies on CLIC luminosity performance with intra-train FB system at the IP and ('slow') orbit correction in the BDS

Javier Resta Lopez JAI, Oxford University CLIC Beam dynamics meeting 25-11-09

Introduction

- In order to provide the required small beam sizes and to provide the necessary beam stabilization at the IP it is necessary a combination of 'slow' and 'fast' beam-based feedback systems, active feedback systems and beam tuning strategies
- IP jitter control strategy:
- IP beam stability mainly provided from:
 - Selection of a site with sufficiently small ground motion
 - Pulse-to-pulse FB systems for orbit correction in linac and BDS
 - Active stabilization of the FD quadrupoles
 - Interaction region stability (detector stability, etc.)
- A fast intra-train FB system is thought as an additional line of defence to recover at least ~ 80% of nominal luminosity in case of failure of the above stabilization subsystems.
- A fast FB system can also help to relax the FD sub-nanometer position jitter tolerance, which in the case of CLIC ~ 0.1 nm for the vertical position

Here we show some example results of luminosity performance improvement using a orbit correction with global SVD (in the BDS) + beam-based intra-train FB systems in terms of correcting vertical IP jitter generated by ground motion (BBA techniques to deal with static errors shown in other presentations)

Beam tracking simulations

• Ground motion:

- In the following simulations we apply 0.02 s (corresponding to f_{rep} =50 Hz) of GM (A. Seryi's models) to the CLIC BDS
- What is the RMS vertical beam-beam offset at the IP we have to deal with?
 - Simulation of 100 random seeds:

GM model	rms Δy^* [nm] (in units of σ_y^*)
A (CERN)	0.035 (0.04)
B (SLAC and FNAL)	0.47 (0.52)
C (DESY)	8.9 (9.9)
K (KEK)	6.4 (7.1)

- Macroparticle tracking through the BDS using the code PLACET
- Luminosity calculation using the code Guinea-Pig
- In the simulations we take the average luminosity over a train

Luminosity performance with IP intra-train FB

Simulation time structure:

Example applying a single random seed of GM C

- For the simulations we have considered a total feedback latency of 37 ns. The systems performs approximately a correction every 74 bunches (4 iterations per train)
- For details on the IP-FB system of CLIC, see for example slides from the MDI CLIC meeting, 6 November 2009: http://indico.cern.ch/conferenceDisplay.py?confld=69100

CLIC luminosity result with IP-FB Different scenarios of ground motion

Luminosity distribution for simulation of 100 random seeds of the GM

For quiet sites:

The generated IP-jitter is relatively small after 0.02 s of GM

Model A:

- Without any correction: mean $\langle L/L_0 \rangle_{train} = 99.88\%$
- With IP-FB: mean $\langle L/L_0 \rangle_{train}$ =99.97% std reduced by a factor 2

Model B:

- Without any correction: mean $\langle L/L_0 \rangle_{train} = 91.1\%$
- With IP-FB: mean $\langle L/L_0 \rangle_{train}$ =97.86% std reduced by a factor 4

CLIC luminosity result with IP-FB Different scenarios of ground motion

Luminosity distribution for simulation of 100 random seeds of the GM

For noisy sites:

In these cases significant luminosity degradation

Model C:

- Without any correction: mean $\langle L/L_0 \rangle_{train}$ =30.52% & High standard deviation!
- With IP-FB: mean $\langle L/L_0 \rangle_{train}$ =64.15% std reduced by a factor 2

Model K:

- Without any correction: mean $\langle L/L_0 \rangle_{train}$ =32.53% & High standard deviation!
- With IP-FB: mean $\langle L/L_0 \rangle_{train}$ =67.82% std reduced by a factor 3

SVD for orbit correction in the BDS

- Here, in 'brute force', we consider a global SVD method for orbit correction. SVD is a very robust algorithm, broadly available in the literature.
- Obtaining the response matrix **R** and knowing the BPM readings Δx , the kicks given by the controllers to correct the orbit are:

$$\Delta \mathbf{c} = -\mathbf{R}_{pinv} \Delta \mathbf{x}$$

where \mathbf{R}_{pinv} is the pseudo-inverse of the response matrix, which using SVD can be written as:

$$\mathbf{R}_{pinv} = \mathbf{U}\mathbf{S}_{pinv}\mathbf{V}^{T}$$

in terms of unitary matrices **U** and **V**, and a diagonal matrix **S**

- Possible controllers:
 - Using dipole correctors along the beam line
 - Using transverse magnet movers
- Here we use 78 BPMs and 66 dipole correctors available in the BDS lattice (the IP BPM and the IP dipole not used)

Luminosity result with SVD orbit correction+ IP-FB Different scenarios of ground motion

- If we consider:
 - GM (100 random seed simulation) +
 - orbit correction in the BDS (SVD) using the available BPMs (resolution 100 nm) and dipole correctors in the BDS +
- IP-FB 35 $GM \mod C$ 25 $L_{train} (with SVD + IP-FB)$ 10 5 0 15 10 4 20 15 10 4 2 20 10 4 5 6 10 4 5 6

Model C:

- SVD orbit correction: mean $\langle L/L_0 \rangle_{train} {=} 41.1\%$
- SVD orbit + IP-FB: mean $\langle L/L_0 \rangle_{train} = 77.51\%$

Model K:

- SVD orbit correction: mean $\langle L/L_0 \rangle_{train}$ =42.63%
- SVD orbit + IP-FB: mean $\langle L/L_0 \rangle_{train} = 77.84\%$

Luminosity results summary Different scenarios of ground motion

Luminosity performance SVD orbit correction in the BDS

The SVD orbit correction improves the situation with the most severe cases of GM (C & K), but decreases the luminosity (increases the IP-jitter) with the cases of quiet sites (A & B) with the conditions assumed in this presentation

The SVD orbit correction limited by the BPM resolution.

- Applying 0.02 s of GM model A (CERN site)
- Orbit correction in the BDS (SVD algorithm) : using the available BPMs and dipole correctors in the BDS lattice
- Relative luminosity versus BPM resolution

Some items for discussion on SVD orbit correction

- Necessary to define the hardware details:
 - 100 nm BPM resolution achievable with cavity BPMs
 - Possibility of ~< 10 nm resolution? In principle ~9 nm position resolution has been proved by cavity BPMs designed for the IP at ATF2 [Y. Honda, et al., Proceedings of LCWS/ILC 2007]
 - Introduce corrector limitations
 - etc
- Optimization selecting the most efficient correctors (using MICADO algorithm, studied by A. Latina et al., CLIC-Note-715); other optimization algorithms?
- Define realistic time of convergence of the SVD correction
- Compare performance of SVD:
 - Using dipole correctors as controllers
 - Using magnet movers as controllers (smaller mover step-size as compared to the dipole corrector currents, therefore, in principle finer granularity kicks)
 - Using a combination of both dipole correctors and magnet movers
- Probably I am missing other many items which need to be discussed ...