Some Comments on Feedback and Feedforward at the IP

D. Schulte

Useful and inspiring discussions with Christophe Collette, Juergen Pfingstner and Andrea Jeremie

CLIC Beam Physics Meeting November 25, 2009

System Design

- The IP feedback/feedforward system controls the beam-beam offset
- Available beam signals are for each beam pulse
 - the beam-beam deflection from the post-collision BPMs
 - the incoming beam jitter from the pre-collision BPMs
 - the incoming beam offset from the pre-collision BPMs
 - other beam-beam signals (energy loss, coherent and incoherent pairs,
 ...)
- Other available signals are
 - the mechanical motion of the ground from ground motion sensors
 - the mechanical motion of the quadrupole support from ground motion sensors
 - the mechanical motion of the final quadrupoles from the ground motion sensors

Feedback Design

- Currently three feedback systems are foreseen
 - a mechanical feedback for the quadrupoles (ground motion sensors on quadrupoles+actuators)
 - an intra-pulse beam-based feedback (BPMs+kickers)
 - a pulse-to-pulse beam-based feedback system (BPMs+kickers)
- Note
 - the mechanical feedback could be replaced with a feedforward
- Suggested addition is a feedforward system
 - based on ground motion sensors
 - using the kickers

Proposed Layout

- Sensors are used for mechanical feedback
- Feedforward kicker does not need to be identical with intra-pulse feedback kicker
- Expected beam-beam offset due to quadrupole slice offsets δ_i and kicker strength k can be calculated via

$$\Delta y = ak_{ff} + \sum_{i} b_i \delta_i$$

- Choose k_{ff} such that $\Delta y = 0$ is expected
 - \Rightarrow final beam motion is determined by sensor noise
 - and imperfections in system knowledge

Simplyfied Model

- Four independent point-like quadrupoles
 - correlations will help
 - assume that measured stability is stability of whole quadrupole
- Quadrupole stabilisation feedback and beam feedforward modelled by using sensor noise
- Beam-based feedback adds kicker strength k_b
- PID controller used:

$$k_{b}(n) = g_{i}k_{b}(n-1) + g_{p}\frac{\Delta y(n-1)}{a} + g_{d}\left(\frac{\Delta y(n-1)}{a} - \frac{\Delta y(n-2)}{a} + k_{b}(n-1) - k_{b}(n-2)\right)$$

Performance of Mechanical Feedback

Data from B. Bolzon et al., noise assumed to be real-time measurement noise (A. Jeremie)

Integration with Beam-Based Feedback

Three PID controllers shown

Addition of Feedforward

Best PID controller shown, need to do more detailed analysis

Impact of Intra-Pulse Feedback

- The intra-pulse feedback yields two advantages
 - the luminosity loss for a given beam-beam offset at the beginning of the pulse is reduced by a factor of about 4 (corresponds to tolerance increase by factor 2)
 - the feedback will determine the optimum beam-beam offset more precisely

Thanks to Javier

Conclusion

- We have a proposal for a conceptual feedback/feedforward configuration \Rightarrow need to design and model realistic sub-systems
- Need to address a few points to have necessary input for modelling
 - choose a ground motion spectrum with reasonable assumptions (source)
 - model the mechanical layout (transfer function)
 - design and model the stabilisation system (transfer function)
 - investigate and model sensor noise (source)
- Then put everything into a single simulation
 - optimise controller
 - \Rightarrow preliminary performance prediction
 - \Rightarrow first iteration on design
- Make full simulation
 - e.g. System knowledge, non-linear beam-beam forces, sextupoles, BPMs
 - \Rightarrow predict luminosity performance
 - \Rightarrow iterate